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Parkinson’s disease (PD) is a devastating neurological ailment affecting both mobility and cognitive
function, posing considerable problems to the health of the elderly across the world. The absence of a
conclusive treatment underscores the requirement to investigate cutting-edge diagnostic techniques
to improve patient outcomes.Machine learning (ML) has the potential to revolutionize PD detection by
applying large repositories of structured data to enhance diagnostic accuracy. 133 papers published
between 2021 and April 2024 were reviewed using a systematic literature review (SLR) methodology,
and subsequently classified into five categories: acoustic data, biomarkers, medical imaging,
movement data, and multimodal datasets. This comprehensive analysis offers valuable insights into
the applications ofML in PD diagnosis. Our SLR identifies the datasets andML algorithms used for PD
diagnosis, as well as their merits, limitations, and evaluation factors. We also discuss challenges,
future directions, and outstanding issues.

Parkinson’s disease (PD) is a neurodegenerative brain disorder caused by the
death or impairment of specific midbrain neurons, mainly categorized as a
“Movement Disorder”1. This condition is primarily caused by the degen-
eration of dopamine-producing neurons in the substantia nigra (SN) of the
brain. This impairment causes a significant reduction in dopamine levels,
which disrupts motor control and leads to symptoms such as tremors,
muscular rigidity, bradykinesia, postural instability, and difficulty walking2.
Dopamine is a chemical messenger that helps produce smooth and coordi-
nated muscle and movement functions by transferring signals between the
SN and another area of the brain called the corpus striatum3. Regarding
motor control, dopamine enhances communication between the SN and the
striatum, leading to the nigrostriatal pathway. This pathway regulates motor
circuit activity, allowing for the smooth initiation of voluntary motions.
Cognitive and behavioral problems, including dementia anddepression,may
develop as the disease progresses2.

Beyond motor symptoms, PD can also manifest with various non-
motor issues.Rigidity, speechdisorder, rest tremors, constipation, instability
in gait, rapid eye movement (REM), postural instability, and bradykinesia
are examples of motor symptoms. In contrast, non-motor symptoms
include neurobehavioral, mood disorders, sleep disturbances, cognitive
decline, and sensory issues4. These symptoms are primarily due to a lack of

dopamine, a neurotransmitter in the brain that regulates coordination and
motion.Understanding the significance of dopamine insufficiency is critical
for creating successful therapies for PD. A vital treatment is dopamine
replacement therapy, which functions as a precursor todopamine and helps
refill its generalizabilitymight represent an ongoing, unresolved levels in the
brain, alleviatingmotor symptoms.However, a cure for the condition is still
not available5. Scientists are conducting research to improve patient care,
develop earlier diagnosis methods, and create more effective treatments for
the illness6,7.

Detecting the appropriate treatments to halt the progression of the
disease canbe facilitatedby the earlydiagnosis ofPD, ongoingmonitoringof
the condition’s severity (i.e., preserving the health of the brain’s neurons),
and monitoring the progress of those treatments over time. However,
diagnosing PD can be challenging due to its complexity and the need for
clinical expertise, which may result in misdiagnosis8. Therefore, novel, less
expensive, simpler, and more reliable approaches to Parkinson’s diagnosis
and treatment should be developed9,10. Researchers employed several
machine learning (ML) techniques to improve intelligent systems that can
accurately diagnose PD across various datasets. ML approaches are the
process of automatically applying algorithms to datasets to retrieve valuable
patterns. Typically, these approaches are used to train a computer-aided

1Department ofComputerEngineering,ST.C., IslamicAzadUniversity, Tehran, Iran. 2DepartmentofComputer Science,MichiganTechnological University,Houghton,
MI, USA. 3Department of Computer Engineering, SR.C., Islamic Azad University, Tehran, Iran. 4Department of Computer Engineering, ShQ.C.,
Islamic Azad University, Shahr-e Qods, Iran. 5Department of Computer Science, Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran. 6The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran. e-mail: mh.kashani@iau.ac.ir

npj Parkinson’s Disease |          (2025) 11:187 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-025-01025-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-025-01025-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-025-01025-9&domain=pdf
http://orcid.org/0000-0002-9812-1331
http://orcid.org/0000-0002-9812-1331
http://orcid.org/0000-0002-9812-1331
http://orcid.org/0000-0002-9812-1331
http://orcid.org/0000-0002-9812-1331
mailto:mh.kashani@iau.ac.ir
www.nature.com/npjparkd


diagnosis systemtomakedecisions about classifyingpreviously unidentified
data instances.MLapproaches are categorized into supervised learning (e.g.,
classification and regression), unsupervised learning (e.g., clustering), and
reinforcement learning (e.g., Q-learning)11. In the context of PD diagnosis,
ML approaches may assess patient data such as motor symptoms, imaging
scans, and genetic data to recognize patterns over time and estimate disease
progression7,12.

Furthermore, some researchers have used a group of ML methods
named deep learning (DL) to address the challenges of ML by auto-
mating feature extraction. DL uses multilayer ANN. DL excels at
extracting beneficial features from diverse data such as neuroimaging
data, motor symptoms, and time series13,14. This feature is beneficial
during PDdiagnosis, where slight alterations inmotor functions or brain
activitymight be challenging to recognizemanually. PopularDLmodels,
such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), demonstrated potential in processing multiple types
of patient data for PD diagnosis15–17. By comparing the efficacy of several
ML and DL algorithms in diagnosing PD, we intend to emphasize their
potential to enhance early diagnosis, track disease progression, and
assess the treatment process.

Conducting a thoroughly systematic literature review (SLR)18,19 in
diagnosing PD based on ML with an emphasis on improvements,
research questions, future works, and PD detection directions is rare.
This paper not only reviews the application of well-known ML algo-
rithms in detecting Parkinson’s patients but also studies popular datasets
and approaches and compares their limitations and specifications.
Increasing usage of artificial intelligence (AI) in medicine and disease
detection has shaped the scheme of our research on diagnosing PD.
Finally, our research may assist in developing more precise and reliable
diagnostic methods for PD, improving patients’ quality of life as well as
health conditions. We have addressed the following research questions
to synthesize the relevant information and efficiently convey knowledge
to the research associations:
• What types of data sets are used to diagnose PD?
• Which category of data sets is used the most to diagnose PD?
• What tools are used the most in assessing ML approaches in

diagnosing PD?
• What evaluation metrics are commonly used to assess the ML tech-

niques in diagnosing PD?
• WhatMLalgorithmshavebeen considered themost indiagnosingPD?
• What validationmethods are used in studies diagnosing PDwithML?
• What are the major challenges, future trends, and open issues in

diagnosing PD with ML?

Our investigation highlights the growing interest and rapid expansion
of studies incorporating ML in diagnosing PD. The utilization of ML
technology within healthcare systems, particularly in the context of neu-
rodegenerative diseases such as PD, is becoming increasingly necessary as it
continues to improve. In particular, this literature review offers valuable
information for:
• Healthcare and ML researchers: We offer a thorough review of the

current state of ML approaches and methods for PD diagnosis, pro-
viding insights for those interested in further exploration in this field.

• Neurologists andmedical professionals: UnderstandingML-based PD
diagnosis methods, strategies, and tools could prove helpful for the
diagnosis of neurodegenerative diseases.

The structure of the remaining sections of this SLR is outlined in Fig. 1
and the key abbreviations are defined in Table 1. The RelatedWork section
discusses some related works and motivations. The research method,
including the selection procedure and research questions, is covered in the
Research Methodology section. The Section on Classification provides a
comprehensive analysis and classification of the selected papers, empha-
sizing their primary advantages, disadvantages, and evaluation factors. An
examinationof thefindings, potential trends, andoutstanding issues is given
in the Analysis of Results and Open Issues, Challenges, and Future Trends,
respectively. Threats and limitations of validity are covered in the Threats to
Validity and Limitations section. The conclusion is finally given in the final
section.

Related work
This part of the paper investigates important reviews of the existing datasets
and ML approaches for diagnosing PD. The mentioned studies are eval-
uated in terms ofmain idea, taxonomy, paper selection procedure, database
investigations, open issues, and covered years, and their summary is also
provided. The outcomes are listed in Table 2.

Khachnaoui et al.20 assessed ML and DL-based computer-aided diag-
nosis methods for PD, along with introducing single photon emission
computed tomography (SPECT) and positron emission tomography (PET)
for detection. They deliberated the pros and cons of hand-crafted ML
techniques, concluding that DL approaches offered the most robust and
dependable solution for feature extraction in the diagnostic domain.
Additionally, Salari et al.21 proposed an SLR to evaluate the effectiveness of
ML methods in detecting PD cases until the end of 2020. This review
involved sevendistinct phases, wherein they categorized various approaches
and databases, providing statistical insights. Ultimately, their findings sug-
gested that ML approaches offered practical utility in diagnosing PD.

Fig. 1 | Structural map of this SLR.
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Table 1 | List of abbreviations

Abbreviation Definition Abbreviation Definition

AI Artificial Intelligence LASSO Least absolute shrinkage and selection operator

AD Alzheimer’s disease ML Machine learning

ANN Artificial neural networks mRMR Minimum redundancy maximum relevance

ART Artifact detection tools MLP Multi-layer perceptron

ANT Advanced normalization tools MRI Magnetic resonance imaging

ARR Analysis of variance with recursive reduction MCOA Modified crayfish optimization algorithm

AdaBoost Adaptive Boosting MDS Multidimensional scaling

BGRU Bidirectional gated recurrent unit MFDFA Multifractal detrended fluctuation analysis

BLSTM Bidirectional long short-term memory MS-ResNet Multi-scale residual neural network

BOSS Bag of symbolic Fourier approximation symbols MLA Modified local accuracy

BRF Bagged random forests MLP_BPC Multilayer perceptron back propagation classifier

BNB Bernoulli naive Bayes MetDNA Metabolite identification and dysregulated network analysis
software

ChOA Chimp optimization algorithm NB Naive Bayes

CRNN Convolutional recurrent neural networks N3 Non-parametric non-uniform intensity normalization algorithm

CatBoost Categorical Boosting NPNN New probabilistic neural network classifier

CART Classification and regression tree PCA Principal component analysis

CUDA Compute unified device architecture PNN Probabilistic neural networks

DL Deep learning PET Positron emission tomography

DNN Deep neural network PD Parkinson’s disease

DSL Deep sample learning PAC Passive aggressive classifier

DCNN Deep convolutional neural network RIPPER Repeated incremental pruning to produce error reduction

DT Decision tree PLS-DA Partial least-squares discriminant analysis

DCT Discrete cosine transforms QDA Quadratic discriminant analysis

DAT Dopamine transporter QSM Quantitative susceptibility mapping

DWT Discrete wavelet transforms QC-RLSC Quality control robust loess signal correction

DRSN Deep residual shrinkage network QReLU Quantum rectified linear unit

ELM Extreme learning machine REM Rapid eye movement

EM Expectation-maximization RNN Recurrent neural network

ELA Ensemble learning based AdaBoost ReLU Rectified linear unit

ECG Electrocardiogram RF Random forest

ET Extra trees classifier RQ Research question

ERT Extremely randomized trees ResNeXt Residual neural network

ECOCMC Error correcting output codes model classifier RMSPROP Root mean square propagation

FOG Freezing of gait RMA Robust multi-array average

FT First step transfer RDFSA Regularized discriminative feature selection algorithm

FFT Fast Fourier transform SLR Systematic literature review

FSL FMRIB software library SPECT Single-photon emission computed tomography

FNN Feedforward neural networks SVM Support vector machine

FSKL-LLC Feature selection and kernel learning for local learning-based
clustering

SPM Statistical parametric mapping

GMM Gaussian mixture models SGD Stochastic gradient descent

GB Gradient boosting SMOTE-ENN Synthetic minority oversampling technique – edited nearest
neighbors

GDABC Gbest dimension artificial bee colony SHAP Shapley additive explanation

GAN Generative adversarial network SN Substantia nigra

GA Genetic Algorithm SNPC Substantia nigra pars compacta

Grad-CAM Gradient-weighted class activation mapping SVM-RFE SVM recursive feature elimination

GNB Gaussian naive Bayes SDTW Sequential dynamic time warping

GBDT Gradient boosting decision trees SMOTE Synthetic minority oversampling technique

HC Healthy control STMIM Spatiotemporal microstate identification model

HGSA Hybrid grid search algorithm SVR Support vector regression
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In another study, Tanveer et al.22 offered a review of papers from 2013
to 2021 that focused on using deep neural network (DNN) and ANN to
detect PD. The authors analyzed various data modalities and model per-
formances, finding that convolutional recurrent neural networks (CRNN)
models excelled in time-series accuracy. They also concluded that the per-
formance of ANNs improved when clinical features were incorporated.
Lastly, they outlined the pros and cons of thesemodels and suggested topics
for future research. Further, Sigcha et al.23 assessed 69 papers on using ML
andDL to analyzemotor and non-motor data fromwearables. The selected
paperswere from2012 to 2022, focusing onmonitoring and diagnosingPD.
Also, they provided some future trends and challenges.

Additionally, Skaramagkas et al.24 presented a systematic review
leveraging DL approaches to discriminate PD symptoms effectively with
motor symptoms. They investigated 87 papers from 2016 to 2023 over DL,
considering speech, upper limb, facial expression, and gait data. Moreover,
Amato et al.25 reviewed acoustic features andMLmethods for detecting PD.
They analyzed 102 papers published from 2017 to 2022. Their focus was on
statistically evaluating the applied techniques and algorithms. Khanna
et al.26 investigated the application of neuroimaging andMLmethodologies
in thediagnosis of different disorders, such asPD,Alzheimer’s disease (AD),
and Schizophrenia. The distinctive aspect of this study resided in its
incorporation of the most recently published scholarly publications.

Keserwani et al.27 examined various ML, meta-heuristic, and DL
models for diagnosing PD. Additionally, they improved the accuracy of
existing models by utilizing speech signal datasets. Furthermore, potential
future directions were explored. Also, Islam et al.28 analyzed ML and DL
methods for diagnosing PD, specifically looking at handwriting and wave
databases. They explored different algorithms and the nuances of bio-
markers to improve diagnosis. Findings suggested these techniques in
diagnosing patients, though the study also outlined certain constraints and
potential directions for future research. In another review, Sabherwal and
Kaur29 assessed the effectiveness of ML and DL algorithms regarding PD
detection.Variousmethodswere analyzed.Also, their limitations and future
trends were discussed. Papers were selected from 2013 to 2023 over the
mentioned area. Giannakopoulou et al.30 also reviewed ML algorithms
trained on data collected from wearable sensors and IoT devices for pre-
dicting PD. The authors surveyed 112 papers in an SLR manner, high-
lighting the best methods and tools.Moreover, some open issues and future
challenges were discussed.

Furthermore, Rana et al.31 offered a review to identify the common and
accessibleAI algorithms andML techniques for detectingPDpatients. They
reviewed 112 papers and examined them in terms of data andmethods. The
study results indicated that ML and biomarker data had the highest effi-
ciency in PD detection. They also discussed some future trends and chal-
lenges. Zhang32 categorized ML-based techniques of PD diagnosis into 3
groups by assessing 51 papers from 2006 to 2019, namely discrimination

between PD and healthy control (HC), differential diagnosis, and early PD
detection. Also, results demonstrate that the use case of ML improves the
accuracy of PD identification. Moreover, some challenges and future solu-
tionswere introduced.Also,Chandrabhatla et al.33 investigated the common
MLmodels and computational techniques used for detecting PD from1970
to 2020. This review was carried out by using the US National Library of
Medicine PubMed database, showing the significant advances in the
mentioned area.

Table 2 shows that while the covered time by previous papers is broad,
theyevaluateda limitednumberof studies.Theworksof Salari et al.21, Sigcha
et al.23, Giannakopoulou et al.30, and Rana et al.31 cover fewer studies over
more extendedperiod.Moreover, only three papers (Rana et al.31, Keserwani
et al.27, and Islam et al.28) offer classifications. Also, it should be noted that
several studies did not examine datasets at all, including those by Rana
et al.31, Sabherwal and Kaur29, Khachnaoui et al.20, Khanna et al.26, Gian-
nakopoulou et al.30, Zhang32, and Chandrabhatla et al.33. However, out of
these studies, theworkof Skaramagkas et al.24 is similar to our investigations.
In this SLR, 80 publications between 2016 and 2023 have been reviewed, but
its authors didnot present any taxonomyor study applied tools. Islamet al.28

conducted another close effort; however, it introduced a taxonomy that
focused solely on handwriting and voice data, examining fewer experiments
than ours from2000 toMarch 2023 and did not present the employed tools.
The closest in breadth, Rana et al.31, assessed a small number of studies, did
not evaluate datasets, and did not comprehensively address open issues. In
addition, it was not written in a systematic way.

Furthermore, the reviews by Amato et al.25, Chandrabhatla et al.33, and
Khachnaoui et al.20 did not discuss open issues, did not present any tax-
onomy or classification, and were not written systematically. Given these
gaps, a comprehensive SLR is needed that not only addresses these limita-
tions but also clearly identifies open issues and future research directions.
On the other hand, the statistical correctness of our work is enhanced by its
careful evaluation of 133 publications published between 2021 and April
2024.Themajority of prior evaluationswerenot structural andweremissing
some crucial pieces of information. They often failed to consider tools,
present any taxonomy or classification, or discuss the merits, downsides,
and unanswered concerns. As of right now, a comprehensive evaluation of
the various datasets utilized for PD diagnosis with ML has not been
published.

Research methodology
Researchers have introduced various techniques for diagnosing PD. This
section describes the systematic phases of examining various ML approa-
ches for diagnosing PD. Figure 2 illustrates that, in contrast to the non-
structured review process, the SLR process reduces bias while identifying
research directions and open issues by following the correct phases in a
methodical sequence for investigating the literature19,34,35. SLR methods are

Table 1 (continued) | List of abbreviations

Abbreviation Definition Abbreviation Definition

HRQoL Health-related quality of life SF-PC Sort features based on pairwise correlations

IoT Internet of things SSAE Stacked sparse autoencoder

ICA Independent Component Analysis TL Transfer learning

IMC Iterative means clustering TCS Transcranial Sonography

IO-HMM Input-Output Hidden Markov Model TQWT Tunable Q-factor wavelet transform

IPA Ingenuity pathway analysis UFS-MCC Unsupervised feature selection for multi-class cluster

JCR Journal citation reports UMAP Uniform manifold approximation and projection

KNN k-nearest neighbors UFS-OL Unsupervised feature selection algorithm with ordinal locality

LightGBM Light gradient boosting machine VGG Visual geometry group

LR Logistic regression WFM-DSS Weighted fusion mechanism based on deep sample space

LDA Linear discriminant analysis WPT Wavelet packet transform

L1R&FS L1 regularization feature selection XGBoost eXtreme gradient boosting
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based on well-defined instructions to identify, provide the desired results,
analyze, and answer the definedquestions. Therefore, this paper utilizes SLR
guidelines to design a three-stage review procedure: planning, conducting,
and documenting18.

Planning
The planning phase originates by defining the reason for the research and
culminates in establishing the methodology for the review protocol in the
following manner:

Stage1: researchmotivation. An SLR is needed to classify and compare
published studies on diagnosing PD by utilizing a characterization fra-
mework. While the causes of PD are uncertain, medication and surgery
can relieve its symptoms. However, early diagnosis of the syndrome and
its progression rates may be crucial in determining suitable treatments.
Therefore, scientists have developed various techniques to address this
issue and improve PD’s diagnosis accuracy. This has raised the motiva-
tion to conduct a systematic review on the application of different ML
approaches for diagnosing PD, categorizing them taxonomically, and
presenting a concise comparative analysis of the applied datasets and
techniques, as well as their potential limitations and challenges.

According to our findings, few papers give an in-depth review of this
subject. Since the evaluations of previous studies had limitations, provided
no analysis on applied tools, and evaluated insufficient datasets, presenting

anSLR is essential. By contrast, ourSLRcarefully assesses133 currentpapers
to offer a systematic categorization of datasets utilized in ML for PD diag-
nosis, addressing significant gaps in prior research. This detailed assessment
helps to improve diagnosticmethods, achieve our following goals, and guide
future advancements in the field.
• To include papers that have recently been published
• To outline any potential future works
• To investigate evaluation factors and applied tools
• Topresent a comprehensive taxonomy, concise statistical information,

and simulation tools and precisely define the paper selectionprocedure

Stage 2: research questions. We have developed research questions
based on our motivation to conduct an impartial and scientific exam-
ination of PD datasets and the ML algorithms utilized in detecting the
disease at its early stages. Answering the defined questions identifies
available issues on this topic, which could also assist in brainstorming
fresh ideas throughout this documentation phase. Table 3 highlights
these research questions (RQs):

Stage 3: review protocols. We have presented and implemented a
review protocol, which includes a set of questions, the paper selection
method, and data extraction in Stages 1, 2, and 3 of the conducting
phases. Following the guidelines in18 and36, we sought feedback from a
third-party expert with experience in conducting SLRs on ML and

Table 2 | Summary of related works

Review
type

Article Main topic Publication
year

Paper selection
process

Taxonomy Open
issue

Covered year Dataset
investigation

Tools

Survey 20 DL techniques in PD feature extraction 2020 No No No 2013–October
2020

No No

22 Review of DNN/ANN in PD detection 2022 Yes No Yes 2013–-2021 Yes No

25 Voice analysis survey for PD diagnosis 2023 Yes No No 2017–June 2022 Yes Yes

26 ML approaches overview in PD
diagnosis

2023 Yes No Yes 2017–
February 2023

No No

27 DL, ML, and meta-heuristics
approaches in PD detection

2024 No Yes Yes 2012–January
2023

Yes No

29 ML/DL methods for PD identification 2024 Yes No Yes 2013–April 2023 No No

31 ML’s role in PD detection 2022 Yes Yes Yes 1996–2022 No Yes

32 ML approacheswith imaging and clinical
data for PD

2022 No No Yes 2006–2019 No No

33 ML and digital tech evolution in PD
detection

2022 No No No 1970–2020 No No

SLR 21 ML approaches performance in PD
diagnosis

2022 Yes No No 2011–November
2020

Yes No

23 Wearable devices for PD monitoring 2023 Yes No Yes 2012–April 2022 Yes No

24 ML for PD detection via motor
symptoms

2023 Yes No Yes 2016–January
2023

Yes No

28 PD diagnosis via voice and handwriting 2024 Yes Yes Yes 2000–March
2023

Yes No

30 IoT monitors and ML for PD diagnosis 2022 Yes No Yes 2012–August
2021

No No

This
paper

Applied ML datasets for PD diagnosis – Yes Yes Yes 2021–April 2024 Yes Yes

Fig. 2 | Overview of the research methodology.
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healthcare systems to evaluate the protocol before its implementation.
We incorporated his recommendations to modify the protocol. In
addition, we conducted a pilot study (including about 20% of the papers)
to eliminate researcher bias and boost the extraction of data. We have
improved the inclusion/exclusion criteria, search strategies, and the
scope of the review during this stage. In addition, a protocol was designed
based on37 and our prior experience in conducting systematic reviews38–51.

Conducting
The conducting phase of the research process begins with choosing the
papers and ends with the extraction of data. This section attempts to clarify
the process of seeking and selecting articles throughout the second phase of
the SLR. This section consists of two parts. First, study selection explains the
process of selecting papers, and second, data extraction and synthesis,
expressing how we have accomplished the review.

Stage 1: study selection process. This section describes the process of
identifying and choosing articles during the second phase of SLR. As
demonstrated in Fig. 3, we choose papers in this timeframe employing a two-
stepprocedure.Oneof themost crucial requirementsofdevelopinga research
plan is finding all publications without bias. Standard strings were found and
added to the search phrase to achieve this objective. A review methodology
was also designed to help identify relevant and unbiased research. During the
first selection procedure, all search terms associated with Parkinson andML
algorithms were chosen to ensure that no papers were missed. Throughout
this stage, the following search terms were employed in the abstracts, titles,
and keywords of six academic online databases:
• Initial selection: we conducted a thorough search throughout many

reputable databases, namely Elsevier, IEEE, Taylor & Francis, Springer,
ACM,Nature, andWiley, using the searchphrase suppliedbelow,which
included keywords, titles, and abstracts. Our search, specifically utilizing
the journal citation reports (JCR) as a source, spans 2021 through April
2024. This timeframe was selected due to the significant variety and
volume of publications in PD detection employing ML methods. 729
papers related to the collaborative field of ML and PD detection were
found as a result of this search. These papers were published in various
sources, including journals, conferences, and book chapters.

Parkinson [AND]

(Supervised <OR > SVM<OR> “support vector machine” <OR> “linear
discriminant analysis” <OR> “naive Bayes” <OR> “Machine Learning”
<OR > LDA<OR> “Deep Learning” <OR >KNN<OR> “k-nearest
neighbors” <OR> “Neural Network” <OR> “Neural Networks” <OR>
“DecisionTrees”<OR> “RandomForests”<OR>Gaussian <OR> “Latent
Variable” <OR> Unsupervised <OR> “Data Clustering” <OR>
“Dimension Reduction” <OR> Ensemble)

• Final selection: the papers extracted in the previous step were exam-
ined, and the inclusion/exclusion criteria (Table 4) were applied. Sur-
vey papers, theses, non-English papers, books, non-peer-reviewed
papers, conference papers, short papers, and book chapters were
excluded. The selected papers were thoroughly read, and quality
assessment was used to include only those papers that presented
evaluating details and approaches. At the end of this stage, 133 relevant
studies were chosen for qualitative evaluation.

Stages 2 and 3: data extraction and synthesis. We acquired data from
a list of online academic databases. We provided it in a systematic format
based on characterization aspects employing the guidelines above. A
structured analysis was created by exploring the restrictions and poten-
tials of the studied papers, as well as the perspectives on future studies,
providing us with an exploration of the collective study findings. We
extracted data from the examined papers, concentrating on dataset types,
applied tools/algorithms, advantages, disadvantages, paper main ideas,
and evaluation metrics in Section “Classification of the selected studies”.
Then, based on the data extracted in Section “Classification of the selected
studies”, the results of this study were analyzed, and the findings were
discussed and addressed alongside the research questions in Section
“Analysis of results”. Furthermore, the review of the papers in Section
“Classification of the selected studies” and the data extracted from the
studied works in Section “Analysis of results”, highlight key challenges,
open issues, and future trends in applyingML for PDdiagnosis, which are
comprehensively detailed in Section “Open issues, challenges, and future
trends”.Table 3 | Research questions

RQ1: What types of data sets are used to diagnose PD?

RQ2: Which category of data sets is used the most to diagnose PD?

RQ3: What tools are used themost in assessingML approaches in diagnosing PD?

RQ4: What metrics are significantly used to assess the ML techniques in
diagnosing PD?

RQ5: What ML algorithms have been considered the most in diagnosing PD?

RQ6: What validation methods are used in studies diagnosing PD with ML?

RQ7: What are the major challenges, future trends, and open issues in diagnosing
PD with ML?

Fig. 3 | Paper selection process.

Table 4 | Inclusion/exclusion criteria

Criteria

Inclusion • The papers focusing on PD diagnosis based on ML approaches
• The papers published from 2021 to April 2024

Exclusion • Surveys, books, review papers, and book chapters
• Short papers with fewer than six pages
• Non-English papers
• Papers not directly related to PD and ML approaches
• Conference papers
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Documenting
In the documenting phase (see Fig. 2), observations are recorded, and the
discussion of threats to validity and limitations is provided in Section
“Threats to validity and limitations”. The results are evaluated, visualized,
and presented in Section “Analysis of results”.

Classification of the selected studies
This paperpresents a classificationdesigned toachieve twomajor objectives.
First, it facilitates an SLR of the extensive body of research on PD diagnosis
using ML approaches. Second, organizing the studies into five data-driven
categories—illustrated in Fig. 4—enhances readers’ understanding of the
main research areas in the field. The proposed classification highlights the
important role of datasets in diagnostic results. For instance, the adoption of
multimodal datasets demonstrates growing interest in innovative approa-
ches that leverage diverse data sources to improve the accuracy of PD
diagnosis. Although alternative classification exists, our classification, to the
best of our knowledge, has not been adopted in earlier reviews. By con-
centrating ondatasets, thiswork offers a unique perspective that emphasizes
both the pivotal role of data inMLperformance and the existing gaps in data
diversity and availability.

This section also investigates 133 papers to determine the PD dataset,
diagnosis approaches, objectives, and applied approaches. In addition, we
provide the advantages and disadvantages of these approaches by using
assessment metrics defined in Table 5. Moreover, Fig. 4 illustrates the
proposed classification for PD;while presenting a classification for PD is not
a trivial task, it allows readers to easily access dataset resources and the
related papers, providing a holistic understanding of thefield and helping to
identify research gaps. However, each researcher may adopt a different
approach to categorization due to their unique perspective.

Furthermore, the selectedpaper appliesMLapproaches to speedup the
diagnosis of PD using proper datasets. These datasets are classified into five
groups: acoustic data/features, medical imaging, movement data, bio-
markers, and multimodal datasets.

Figure 4 presents the categorization used in this review, which is based
on the datasets utilized for diagnosing PD. Five major categories were
identified, each reflecting the unique characteristics and data extraction
methods of their respective datasets.

Acoustic data/features
Acoustic data is crucial for diagnosing PD, as audio symptoms can be
detected early, often before noticeablemotor symptoms appear52. Therefore,
diagnosing PD through this information can significantly enhance the
quality of life for the affected individuals2. Symptoms of PD can be classified
into two categories: dysphonia and dysarthria53. In the early stages of
diagnosis, the identification of dysphonic indicators candelay the severity of
the disease. Furthermore, recording voices is a relatively low-cost approach,
and physical examination can be time-consuming54. Therefore, having
sufficient data for training ML models could significantly expedite PD
prediction and improve patient well-being. In Table 6, we present data from
databases related to acoustic-based papers, including the number of patients
and healthy subjects, the gender of patients, and details such as extracted
features, audiofile format, and thenumber of samples. Table 7 compares the
reviewed studies, highlighting their advantages, disadvantages, main ideas,

applied tools, and algorithms. The evaluation parameters employed in
acoustic-based papers are analyzed in Table 8. In Section “Review of
acoustic-based approaches”, acoustic-based approaches are reviewed.
Ultimately, Section “Qualitative analysis of acoustic-based approaches”
presents aqualitative analysis of acoustic-based approaches, examining their
strengths, weaknesses, opportunities, and threats.

Review of acoustic-based approaches. Yao et al.55 proposed a model
based on deep convolutional neural networks (DCNN) along with an IP-
based whale optimization algorithm (WOA). This study aimed to diag-
nose pathological speech in PD and cleft lip and palate patients.
According to the results, the proposed model provided high precision
and accuracy. Also, Khaskhoussy and Ayed56 proposed a method to
detect PD by analyzing speech data, and they also used SVM and con-
volutional neural network (CNN) to classify speech data. The results
showed that this method has high accuracy and specificity. Meanwhile,
Celik et al.57 developed the SkipConNet + RF diagnostic model for PD
detection via speech signals. The model integrated CNN and RF algo-
rithms. SkipConNet extracted vital speech signal features, and the RF
predicted these features. According to the study, the presented model
surpassed other DL and ML methods in accuracy.

Following a similar investigative field, Ali et al.58 introduced an
ensemble method named ensemble model with optimal features and
sample-dependent base classifiers (EOFSC) for identifying individuals with
PD. The technique addressed issues of generalization and low accuracy by
analyzing voices. Also, Masud et al.59 developed the crow search and deep
learning (CROWD) model for diagnosing and classifying PD. The model
employed the adaptive crow search algorithm (ACSA) to select the com-
pressed feature vector and a DL-based autoencoder to generate the com-
pressed feature vector. The outcomes also indicated that the proposed
model achieved high sensitivity, specificity, and accuracy. Yücelbaş60

introduced amodel to diagnose PD in the early stages using acoustic signals.
Based on the results, the information gain algorithm-based k-nearest
neighbors (IGKNN) model had high accuracy and recall.

Regarding the detection of PD with ML approaches in a quicker
manner, Wang et al.61 introduced a system for diagnosing PD using speech
data and DLmethods. Also, results showed that the mentioned system was
highly accurate. Moreover, Dhar54 designed a two-phase reduction system
with the objective of diagnosing PD in its early stages. The first reduction
steps comprised ML-based feature selection, whereas the other phase
employed unsupervised techniques. High performance, as indicated by
accuracy and AUC, was demonstrated through the comparisons and
assessment findings. Li et al.62 introduced amethod called two-step transfer
learning (TSTL) to identify Parkinson’s patients from healthy individuals
based on speech patterns. Also, their method was evaluated with a new and
publicly available dataset. In addition, the results showed that the presented
method had high accuracy, sensitivity, and specificity.

Moreover, Vital et al.63 presented amodel based on neural networks to
detect individuals with PD by analyzing their voices. They compared the
method with various ML algorithms, including naive Bayes (NB), random
forest (RF(, and AdaBoost. Based on the results, the accuracy and efficiency
of the model were confirmed. In a related study, Jyotiyana et al.64 presented
an approach for PDdiagnosis usingDL techniques. In this study, audio data

Fig. 4 | The classification of PD analysis.
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Table 5 | Definition of evaluation metrics

Metrics name Description

Condition positive (P) The count of positive samples in data.

Condition negative (N) The count of negative samples in data.

True positive (TP) The count of correctly positive predictions.

True negative (TN) The count of correctly negative predictions.

False positive (FP) The count of wrongly positive predictions.

False negative (FN) The count of wrongly negative predictions.

Accuracy It is the proportion of correctly labeled samples to the total observations55:
ACC ¼ TPþTN

PþN ¼ TPþTN
TPþTNþFPþFN

Sensitivity, recall, or true positive rate (TPR) It is a metric that measures the ratio of correctly positive predictions out of the total number of positive samples56:
TPR ¼ TP

P ¼ TP
TPþFN

Specificity, selectivity, or true negative rate (TNR) It represents the ratio of true negatives to the total number of actual negatives in the data145:
TNR ¼ TN

N ¼ TN
TNþFP

Kappa coefficient It is used to calculate the level of agreement between two raters114:
κ ¼ p0�pe

1�pe

Precision or positive predictive value (PPV) The proportion of correctly classified positive samples (TP) to all classified positive samples is known as precision146:
PPV ¼ TP

TPþFP

F1-score or F-measure F1-score offers amethod for combining recall and precision into a singlemeasure that accounts for both parameters. It
represents the harmonic mean (average) of recall and precision147:
F1� score ¼ 2× PPV×TPR

PPVþTPR ¼ 2TP
2TPþFPþFN

False positive rate (FPR) This metric represents the ratio of negative samples that are incorrectly classified as positive by a model57:
FPR ¼ FP

FPþTN

Receiver Operating Characteristic (ROC) or Area
Under the Curve (AUC)

It is plotted with TPR against the FPR, with TPR on the y-axis and FPR on the x-axis. A higher AUC indicates higher
performance146.

Matthew’s correlation coefficient (MCC) It calculates the correlation of predicted and actual binary outcomes, considering all four factors of a confusionmatrix.
In other words, it measures the performance of binary classification58:
MCC ¼ TP ×TN�FP ×FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TNþFPð ÞðTNþFNÞ
p

Root mean square error (RMSE) It is a statisticalmetric that’s used to assessmodel performanceandgaugehow far the actual value distance is from the
predicted value59:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
xi�x̂ið Þ2
N

r

Precision-recall curves (PRC) PRcurves are binary classification evaluation tools used inML for imbalanceddata sets. They visualize performance at
different thresholds, allowing comparison of models and selection of optimal thresholds60.

Negative predictive value (NPV) NPV shows the proportion of correctly negative results over all the negative predictions. It expresses the likelihood that
a predicted negative is a true negative85:
NPV ¼ TN

TNþFN

Standard deviation Standard deviation is a statistical value for representing the variation or dispersion of a dataset from its mean value.
Also, it is calculated as the square root of the variance86:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Xi�μð Þ2
N

r

Intraclass correlation coefficient (ICC) The ICC statistic measures the likelihood of outcomes being comparable within each cluster or different between
clusters compared to other clusters87.

Mean square error (MSE) It is the mean of the square of the difference between observed values and estimated data88:

MSE ¼ 1
N

PN
i¼1ðyi � ŷÞ2

Pearson’s correlation coefficients It represents a statistical parameter that evaluates the strength and direction of the linear correlation between two
continuous variables87:

r ¼
P

ðxi��xÞðyi��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi��xÞ2

P
ðyi��yÞ2

p

Euclidean distance Euclidean distance measures the straight-line distance between two points in space. It’s commonly used in cartesian
coordinate systems89:

dðp;qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðqi � piÞ2

s

Dice similarity coefficient (DSC) DSC is a statistical measure for evaluating the similarity between two sets. It is commonly applied in image processing
and bioinformatics, as well as other fields that require binary dataset comparison89.

Mean absolute error (MAE) It measures the average magnitude of errors between actual values and predicted values. Additionally, it is used to
evaluate the accuracy of regression models115:

MAE ¼ 1
n

Pn

i¼1
jyi � ŷij

Correlation coefficient Correlation coefficient represents the direction and strength of the relationship between two variables through a
number between -1 and 1170:

r ¼
P

x��xð Þ y��yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x��xð Þ2 y��yð Þ2

p
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Table 5 (continued) | Definition of evaluation metrics

Metrics name Description

Signal-to-noise ratio (SNR) In signal processing, SNR is a metric used to determine the relative magnitude of a desired signal compared to the
nearby noise. A higher SNR number conveys a better signal quality116.

Mean integrated squared error (MISE) When estimating nonparametric regression functions, the MISE is a useful measurement to evaluate an estimator’s
overall accuracy. It displays the integrated squared error’s predicted value throughout the data set8:
MISEð̂fÞ ¼ E½R ð̂fðxÞ � fðxÞÞ2dx�

G-mean Inevaluating classificationmodels, particularly in imbalanceddatasets, thegeometricmean is acriterion. It also aims to
balance the performance of the model between different classes117:
G�mean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR×TNR

p

Equal error rate (EER) It is the error observed at the ROC curve point where FPR equals FNR118.

F1-micro F1-micro is a measure of the harmonic mean of recall and precision, calculated by summing all TP, FP, and FN across
all classes119:
F1�micro ¼ TP

TPþ1
2� FPþFNð Þ

PR (AUC) For imbalanced datasets, in particular, the precision-recall area under the curve—a binary classification—is utilized to
assess the efficacy of the model119.

Relative absolute error (RAE) RAE is a ratio used to assess the performance of a forecasting model and compare the average error (residual) to the
errors generated by a naive model115:

RAE ¼
P

jyi�ŷi jP
jyi��yj

Model likelihood This value provides a quantitative assessment of a model’s data-fitting performance. It is commonly applied when
comparing the efficacy of multiple models.171.

Balanced accuracy Balanced accuracy, defined as the average recall in each group, is used in group classification problems to deal with
imbalanced data sets174.
Balanced accuracy ¼ sensitivityþspecificity

2

Table 6 | Acoustic datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

55 CIEMPIESS189 – – – – – – Mexican Spanish podcast,
6717 samples
(45 F, 96M)

190 – – – – – – 135 children (ages 5–15)

PC-GITA corpus191 50 50 – – – – 100 Spanish speakers

56 Sarkar dataset192 20 20 6 14 10 10 1208 audio recordings (.wav),
Test: 168 samples from 28 participants
(14 HC and 14 PD)

57 Kay Elemetrics Disordered Voice Database (Max
Little)193

23 8 – – – – 195 speech samples,
23 acoustic features from audio signals

PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

58 Sarkar dataset192 20 20 6 14 10 10 68 participants:
40 for training and 28 for testing,
26 extracted acoustic features

UCI Parkinson’s Telemonitoring Voice Dataset195. 60 100 19 41 21 79 480 voice samples
(180 PD, 300 HC),
Age range: 43–88 years (age-matched)

59 PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

60 PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

61 MDVR-KCL196 16 21 – – – – Data collected in 2017 at KCL Hospital via
smartphone

54 PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

Kay Elemetrics Disordered Voice Database (Max
Little)193

23 8 – – – – 197 samples from 31 subjects
22 audio features

Parkinson Speech Dataset with Multiple Types of
Sound Recordings197.

40 40 – – – – Sample: 120 patients and 120 healthy individuals,
45 audio features

Sarkar dataset192 20 20 6 14 10 10 26 speech features:
vowels, numbers, and short phrases

62 TIMIT198 – – – – – – Dataset with 6300 sentences,
240 samples,
80 individuals (40 F and 40M)

Sarkar dataset192 20 20 6 14 10 10 26 speech features (vowels, numbers, short
phrases)

23 8 – – – – 26 audio features (time and frequency information)
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Table 6 (continued) | Acoustic datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

Kay Elemetrics Disordered Voice Database (Max
Little)193

DNSH, Clinical 90 - 43 47 – – Dataset with untreated and 54 treated participants

63 Clinical – – – – – – 1200. wav samples
(500 HC, 700 PD),
collected 2016–2019 in Andhra Pradesh, India

64 199 42 – – – – – 42 PD patients monitored for 6 months via
telemonitoring

65 200,201 23 8 – – – – 22 features: MDVP (Shimmer, F0, Jitter), HNR,
nonlinear (DFA, Spread1, Spread2)

Sarkar dataset192 20 20 6 14 10 10 26 features (parameters related to time and
frequency)

202 30 – – – – – 50 voice samples,
71 features extracted using 3 recorder types

66 Clinical 40 40 – – – – Spanish speaker

67 PC-GITA corpus191 50 50 – – – – Spanish speaker

Saarbrücken Voice Database (SVD)203 668 687 – – – – 1355 patients with 71 diseases

Dataset of Vowels204 – – – – – – Audio in wav format,
vowel sounds included

68 LSVT_voice_rehabilitation data set205 14 – 6 8 – – Participant age range: 51–69 years,
9 speech samples per participant,
5 pre-treatment, 4 post-treatment

Sarkar dataset192 20 20 6 14 10 10 PD ranges aged from 43 to 77 years old,
HC ranges in age range from 45 to 83 years old,
26 speech features (vowels, numbers, and short
phrases)

69 GYENNO SCIENCE Parkinson, Clinical 30 15 – – – – 25 F and 5M,
Age range: 37–75 years

PC-GITA corpus191 50 50 – – – – Spanish speaker

70 CIEMPIESS189 – – – – – – Mexican Spanish podcast,
16717 samples
(45 F, 96M)

190 – – – – – – 135 children (5–15 years)

PC-GITA corpus191 50 50 – – – – Spanish speaker

71 206 20 20 6 14 10 10 1208 samples,
Audio in wav format

– – – – – – Total of 28 individuals

72 Kay Elemetrics Disordered Voice Database (Max
Little)193

23 8 – – – – 22 features: MDVP (Shimmer, F0, Jitter), HNR,
nonlinear (DFA, Spread1, Spread2)

73 Sarkar dataset192 20 20 6 14 10 10 1208 audio samples,
688 PD and 520 HC,
(“a”, “o”, “u”) vowels, numbers (1-10), words, and
short phrases

74 Parkinson’s Disease Diagnosis Dataset207 188 64 81 107 – – –

201 23 8 – – – – –

75 Kay Elemetrics Disordered Voice Database (Max
Little)193

23 8 – – – – 22 features: MDVP (Fundamental Frequency,
Shimmer, F0, Jitter), HNR, nonlinear (DFA, Spread1,
Spread2)

76 Kay Elemetrics Disordered Voice Database (Max
Little)193

23 8 – – – – 22 features: MDVP (Shimmer, Fundamental
Frequency, Jitter), HNR, nonlinear (DFA, Spread1,
Spread2)

PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

77 PD Speech (PDS)194 188 64 81 107 41 23 Age range: 33–87 years

78 Giuliano Parkinson’s Voice Dataset208 55 64 24 31 – – –

79 209 16 16 – 16 – 16 PD: average age (61 ± 12)
HC: average age (62.6 ± 13.4)

PC-GITA corpus191 50 50 25 25 25 25 PD: average age (62.2 ± 11.2)
HC: average age (61.2 ± 11.3)

Italian Parkinson’s Voice and Speech dataset210 28 22 9 19 12 10 PD: average age (67.2 ± 8.7)
HC: average age (67.1 ± 5.2)

211 28 13 20 8 4 9 The group mean age is (67.1 ± 6.3) years
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were used to evaluate the proposed approach, and high accuracy was
achieved. Masood et al.65 developed a two-level ensemble-based character-
istic selectionmodel aimedat early detectionof PDusingvoice data analysis.
In addition, thismodelwashighly accurate. Similarly,García et al.66 offereda
high-accuracy two-level ensemble-based attribute selectionmodel aimed at
early detection of PDusing voicedata analysis. In a similar vein,Hireš et al.67

suggested a method based on a CNN ensemble for diagnosing PD using
voice data. Additionally, the results showed that this method provides high
ROC (AUC), specificity, and accuracy.

Ma et al.68 presented a deep dual-side learning ensemblemodel based on
the deep sample learning (DSL) algorithm, combined with deep feature
learning, for recognizing PD via speech. An embedded deep-stacked group
sparse autoencoder (EGSAE) extracted high-quality deep features. The
resultsdemonstrated themethod’shighaccuracy.Nevertheless, this approach
required further validation and rebuilding of deep samples using a deeper
neural network. Quan et al.69 developed a model to diagnose PD via speech
signals and an end-to-end learning architecture. The proposed method
employed a combination of time-distributed two-dimensional CNN (2D-
CNN) and a one-dimensional CNN (1D-CNN) to extract dynamic features
from speech signal time series and remove interdependence. Moreover, the
method demonstrated high accuracy based on the obtained results.

In a similar vein, Chen et al.70 suggested an IP-based chimpanzee
optimization algorithm (IPChOA) to enhance DCNN. Furthermore, the
effectiveness of thismethodwas assessed using speech signals fromboth PD
and cleft lip and palate cases. The results showed that thismethod reached a
high level of accuracy. Meanwhile, Khaskhoussy and Ayed71 presented an
approach for diagnosing PD using ML techniques and speech processing,
while also identifying early changes associatedwith the condition. They also
used features like the mel-frequency brain coefficients-gaussian mixture
model (MFCC-GMM). This study demonstrated high accuracy. In addi-
tion, Biswas et al.72 introduced an approach for early diagnosis of PD using
an ensemble-based ML model called the ensembled expert system for
diagnosis of PD (EESDPD). The suggested method had high accuracy,
recall, and F1-score.

Wei Liu et al.73 developed a model based on speech features and an
ANN to diagnose PD. The results showed that the proposedmodel has high

accuracy, sensitivity, andAUC. Also, Yuan et al.74 investigated the detection
of PD utilizing speech signals and ML approaches. Using the ReLU acti-
vation function, the authors developed a DNN architecture with multiple
concealed layers. In addition, the minimum redundancy-maximum cor-
relation (mRMR) method was used to identify key features. The outcomes
showed that the suggested method obtained a high F1-score, accuracy, and
MCC. Moreover, Kamalakannan et al.75 evaluated different classification
methods for diagnosing PD. J48, SVM, and multilayer perceptron neural
network (MPNN) methods achieved the highest accuracy.

Saleh et al.76 presented amethod for identifyingPDbasedonaudio data
as well as ML and ANN approaches. Additionally, this method achieved a
high level of accuracy. Also, Devarajan et al.77 examined the application of
MLmethods to enhance the quality of diagnoses in the healthcarefield, with
a specific focus on PD. In addition, they have devised ML ensembles to
identify PD, emphasizing the utilization of nonclinical patient data for early
detection.

Guatelli et al.78 offered a technique for diagnosing PD based on neural
networks utilizing the extreme learningmachine (ELM) and acoustic signal
spectrograms. The results demonstrated the practical application potential
of this method, particularly considering the lower cost and shorter time
required for training compared to traditional CNN-based methods. Addi-
tionally, the suggested method had a high level of accuracy. Also, Hireš
et al.79 measured the efficiency of two varied MLmodels, namely CNN and
XGboost, to detect computerized PD. The Authors evaluated their model
regarding accuracy, specificity, sensitivity, and AUC via four datasets. The
result revealed that even if the result in a database is acceptable, it could not
be the same as others.

Pah et al.53 evaluated the efficacy of ML approaches in PD identifica-
tion. They also investigated other voice disorders, such as laryngitis and
dysphonia. Moreover, Eguchi et al.80 proposed a methodology that
employed a transformermodel todistinguishbetweenpatients afflictedwith
PD and those with spinal cerebellar degeneration using speech data. Also,
accuracy and AUC metrics for the proposed model were comparatively
high. In addition, Dhanalakshmi et al.2 provided a technique that uses
speech features and ML techniques to detect early-stage PD. In addition,
they focused on optimizing classification performance and addressing

Table 6 (continued) | Acoustic datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

53 PC-GITA191 50 50 25 25 25 25 PD: average age (71.6 ± 9.44) HC: average age
(60.98 ± 9.46) 100 Colombian-Spanish speakers,
Sustained vowel recordings

Saarbrücken Voice Database (SVD)212, Kiel
Corpus213

– 42 – – 25 17 Dysphonia: 44 individuals
(22 F, 22M),
Laryngitis: 44 individuals
(16 F, 28M),
HC: average age (61.74 ± 6.63)
>2,000 voice recordings from 71 pathological
and HC

80 Clinical 251 – 152 99 – – 101 SCD patients
(41M and 60 F),
PD: average age (71.6 ± 7.4)
SCD: average age (64.3 ± 11.1)
Native Japanese speaker

2 214 188 64 81 107 41 23 Features: 754 total (MFCCs, wavelet, time-
frequency)

52 Voice Samples for Patients with Parkinson’s
Disease and Healthy Controls215

40 41 19 21 24 16 Vowel /a/ samples collected via telephone

81 200,201 23 8 – – – – The Max Little dataset included 195 audio samples

Sarkar dataset192 20 20 – – – – Sarkar dataset:
1040 training samples,
168 testing samples

In this table, we detailed all the datasets in papers and compared participant demographics (number, gender, and health status: #PD => Parkinson’s Disease, #HC => Number of Healthy Control
Participants, #PDF=>Number of Parkinson’s diseaseFemaleParticipants, #PDM=>Number of Parkinson’s diseaseMaleParticipants, #HCF=>Number of HealthyControl Female Participants, #HCM=>
Number of Healthy Control Male Participants).
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Table 7 | A comparison of acoustic data/features papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

55 DCNN-based model for pathological
speech detection

•MATLAB • DCNN
• SpecAugment
• WOA

• High precision
• High sensitivity
• High accuracy
• High specificity
• High F1-score

• Not evaluating a large hybrid
dataset

• Lack of multilingual data
•Not investigating other classifiers
or forms of DCNN

56 ML-based approach using speech
signal analysis

• Not mentioned • SVM
• CNN
• GMM
• MLP
• Adam optimizer
• Expectation
Maximization

• High F1-score
• High accuracy
• High sensitivity
• High specificity
• High precision

• Low scalability

57 DL and ML-based PD diagnosis via
speech signals

• Not mentioned • CNN
• RF

• High accuracy
• High precision
• High recall
• High AUC
• High F1-score
• High specificity

• Low scalability

58 Ensemble-based model for PD
detection using voice signals

• Not mentioned • DNN
• EOFSC

• High accuracy •Not analyzing parameters suchas
F1-score and precision

59 PD detection using DL and ACSA
algorithm

• Python (TensorFlow) • ACSA
• AutoEncoder

• High accuracy
• High sensitivity
• High specificity

• Not investigating unsupervised
classification methods

• Lack of identification of
scrunched feature vectors

60 Acoustic-based PD detection using
IGKNN algorithm

• Not mentioned • KNN • High accuracy
• High recall

• High cost
• Poor handling of multi-
dimensional features

61 Optimized ResNet50 model for PD
diagnosis

• Not mentioned • ResNet50
• GDABC

• High accuracy • High time consumption

54 Two-phase ML-based system for
early PD diagnosis

• Not mentioned • LightGBM • High accuracy
• High AUC
• High precision
• High F1-score

• Not optimizing the
hyperparameters

62 TL-based approaches for PD
detection via speech

•MATLAB • KNN
• SVM
• FT & KNN
• FT&SVM
• TSTL

• High sensitivity
• High accuracy
• High specificity

• Lack of multimodal data

63 Speech-based PD diagnosis using a
neural network

• Not mentioned • PNN • High accuracy • Lack of mobile apps for PD
detection

64 PD detection using DNN on voice data • Not mentioned • DNN • High accuracy • Low scalability

65 Feature correlation–driven ensemble
model for early PD diagnosis

• Python • MLP
• NB
• KNN
• SVM
• DT

• High accuracy
• High AUC

• lack of clinical validation

66 ML-based feature selection for PD
diagnosis

• Not mentioned • SVM • High accuracy • Low scalability
• Low quality of the recording
device

67 CNN on speech recordings for PD
diagnosis

• Not mentioned • ResNet50
• Xception
• SGD

• High accuracy
• High specificity
• High sensitivity
• Language
independence

• High ROC (AUC)

• Low scalability
• Not considering the drug effects

68 DL-based PD diagnosis via feature
extraction

•MATLAB • DSL
• L1R&FS
• SVM
• EGSAE
• IMC
• WFM-DSS

• High accuracy • Not exploring methods to rebuild
deep samples

• Not applying more DNN
architectures

69 End-to-end DL model for PD
diagnosis

• Python (Scikit-learn,
librosa)

• NeuroSpeech

• 2D-CNN
• 1D-CNN

• High accuracy
• High specificity

• Low scalability

70 Optimized DCNN for PD & cleft lip and
palate

•MATLAB • DCNN
• ChOA
• IPChOA
• SpecAugment

• High specificity
• High accuracy
• High F1-score
• High sensitivity
• High precision

• Lack of other languages in the
dataset

• Not investigating other CNNs or
GAN
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Table 7 (continued) | A comparison of acoustic data/features papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

• Not evaluating other non-
pathology-related cues

71 Speech-based PD diagnosis
using SVM

• Not mentioned • SVM
• FFT
• DCT
• AutoEncoder

• High accuracy
• High recall
• High F1-score

• Low scalability
• Lack of phonation, prosody, and
speech rhythm evaluation

72 Stacking ensemble model for PD
diagnosis

• Python • XGBoost
• RF
• LR
• Stacking ensemble
technique

• High accuracy
• High F1-score
• High precision
• High recall

• Low scalability
• Lack of comprehensive
clinical data

73 PD diagnosis using ANN and speech
features

• Statistical software • ANN
• Levenberg-Marquardt
• Back-propagation
algorithm

• High accuracy
• High sensitivity
• High AUC
• High specificity

• Not evaluating additional
languages

• Low scalability

74 PD diagnosis via ML and speech
signals

• Not mentioned • mRMR
• RF
• LR
• KNN
• DNN

• High F1-score
• High accuracy
• High MCC

• Unclear data accuracy and
privacy

• Lack of patient usability and
convenience evaluation

75 Evaluation of ML classifiers for the
detection of PD

•WEKA • J48
• NB-tree
• MPNN
• SVM

• High accuracy • Low scalability
• Not evaluating other advanced
ML algorithms

• Not evaluating feature selection
techniques

76 Ensemble voting for PD detection via
acoustic data

• Python • LR
• Ridge classifier
• SGD
• PAC
• KNN
• Extra tree
• DT
• SVC
• Gaussian NB
• AdaBoost
• Bagging classifier
• RF
• Gaussian process
classifier

• GB
• LDA
• QDA
• XGBoost
• MLP

• High accuracy
• High precision
• High recall
• High AUC
• High F1-score
• High specificity

• Low scalability

77 MLapproach for early PDdetection via
healthcare decision-making

• R programming • NB
• ANN
• DT
• RF

• High accuracy • Lack of applying DL methods
•Motor symptoms were not
considered

78 PD classification based on audio data
using ELM

•MATLAB • Short-time Fourier
transform

• ELM
• CNN

• Low training time
• Low cost
• High accuracy

• Low scalability

79 ML-based voice analysis for PD
detection

• Not mentioned • XGBoost
• CNN

• High accuracy
• High specificity
• High sensitivity
• High AUC (ROC)

• Only acoustic data intended
• Only one of the datasets
determines gender

53 Assessing ML reliability for PD voice-
based diagnosis

•MATLAB • SVM
• Relief-F algorithm

• High recall
• High accuracy

• Low scalability

80 DNN-based classification of PD and
SCD using speech data

• Not mentioned • DNN
• Patchout faSt
spectrogram transformer

• High AUC (ROC)
• High accuracy
• High specificity
• High sensitivity
• Non-invasive
screening method

• Low scalability

2 PD diagnosis using speech features • Python (Scikit-learn) • SVM
• XGBoost
• RF
• KNN
• DT
• LR

• High accuracy
• High F1-score
• High AUC (ROC)

• Low scalability
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imbalanced datasets. The results of the proposed method indicated that it
has high accuracy and AUC (ROC).

Iyer et al.52 proposed a method leveraging data obtained from
recorded sounds and applying ML approaches to distinguish Parkin-
son’s patients from healthy individuals. Also, the proposed method
achieved a high AUC (ROC). Ali et al.81 developed a two-stage

diagnostic system based on ML and DL to improve PD diagnosis using
speech data. In addition, the proposed system provided acceptable
accuracy.

Qualitative analysis of acoustic-based approaches. An analytical
review of acoustic-based approaches has been conducted, highlighting

Table 7 (continued) | A comparison of acoustic data/features papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

• PCA
• SMOTE-ENN

52 ML-based acoustic analysis for PD
detection

• R programming
• Python

• CNN
• RF
• LR

• High AUC (ROC) • Not checking the health status of
HC

• Low scalability

81 Audio-based PD detection via ML
and DL

• Python
• Praat

• SVM
• DNN
• Adam optimizer
• HGSA

• High specificity
• High sensitivity
• High accuracy
• High MCC

• Not examining the severity of PD
in patients

• Low scalability

This table includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages, and disadvantages.

Table 8 | Acoustic evaluation metrics

Article Accuracy Sensitivity Specificity F1-score Precision AUC (ROC) FPR MCC RMSE Kappa coefficient PRC

55 + + + + + +

56 + + + + + +

57 + + + + + +

58 + + + + +

59 + + + + +

60 + + + + + + +

61 + + + +

54 + + + + +

62 + + +

63 + + + +

64 + + + +

65 + + + + + + +

66 + + + +

67 + + + +

68 + + +

69 + + + + + +

70 + + + + + +

71 + + + +

72 + + + +

73 + + + +

74 + + + + +

75 +

76 + + + + + +

77 + + + + +

78 + + +

79 + + + +

53 + + + +

80 + + + + +

2 + + + + + +

52 + +

81 + + + +

Plus (+) means the metric that has been evaluated in the paper, and blank cells mean the metric has not been evaluated in the paper.
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Table 9 | Medical imaging datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

85 Clinical 305 227 132 173 123 104 From Chang Gung Memorial Hospital, Linkou,
Collected from 2008 to December 2017

86 Clinical 120 – 58 62 – – External validation includes 43 PD patients
(24M and 19 F)

87 Clinical 144 55 – – – – Collected from May 2015 –Mar 2020,
Age: 18–75 years,
Disease duration: <4 years

88 Parkinson’s Disease Society Brain Bank216 247 125 – – – – Collected from 2014 to March 2018,
23 incomplete clinical data

89 217 22 – 12 10 – – Age range: 48–77 years

218,219 – – – – In total, 82 individuals participated

90 PPMI220 252 – 84 168 – – Age: 35–86 (average 62.4),
DAT SPECT images: Year 0 & Year 1

91 Clinical 267 160 – – – – The data includesDATSPECT images from years
0 and 1

92 PPMI220,221 92 22 – – – – –

222 14 14 – – – – –

15 15 – – – – –

93 219,223 860 350 – – – – 350 patients from ADNI,
350 patients from PPMI,
160 patients from NIFD,
350 healthy people

94 PPMI220

CCNA224

BioCog225

PD-MCI Calgary226

PD-MCI Montreal227

C-BIG3228

NEUROCON dataset229

Tao Wu dataset229

OpenNeuro Olfactory dysfunction230,231,
Hamburg dataset232

UK Biobank, OASIS3233

SALD234

1024 1017 – – – – Data collected from 13 separate studies

95 PPMI220 236 82 – – – – –

96 Clinical 115 115 – – – – –

97 Clinical – – – – – – In total, 210 individuals participated

98 Clinical 43 55 – – – – –

99 Clinical 103 255 – – – – –

Clinical 22 26 – – – – –

84 Clinical – – – – – – 239 individuals,
137 from Municipal Medical Center,
102 from Kanazawa University Hospital

100 Clinical 95 – – – – – –

101 NewHandPD235 31 35 – – – – 66 individuals

102 Clinical 96 – – – – – From September 2016 and December 2020

103 236,237 – – – – – – 582 MRI images,
249 MRI for PD

104 PPMI220 255 249 – – – – –

105 Ruijin Hospital,
Clinical

92 287 – – – – –

First Affiliated Hospital of Zhengzhou
University,
Clinical

83 72 – – – – –

106 PPMI220 357 210 125 232 74 136 1213 images,
PD: Average age (61.83 ± 9.89)
HC: Average age (60.77 ± 11.29)

107 PPMI220,221 170 170 – – – – 2720 SPECT DaTSCAN images
(1360 PD and 1360 HC)

108 PPMI220,221 366 163 – – – – SWEED Group: 63 individuals,
Prodromal Group: 48 individuals
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the key strengths, weaknesses, opportunities, and threats, which are
discussed in detail below:
• Strengths: Our analysis of acoustic-based approaches reveals three

considerable advantages. Firstly, it is low-cost. Secondly, it is non-
invasive, so it does not provide any thread for the patients. Lastly, the
solution they provide is scalable and can be utilized in real-world
settings. Moreover, the very first important feature is that vocal
symptomsmay appear years before other symptoms, and as a result, it
makes early detection possible. The accessibility is outstanding since it
can be used as a mobile application, making it widely available and
suitable for real-world usage.

• Weaknesses: On the other hand, it needs to be mentioned that the
diagnosis models may not work effectively in noisy environments,
leading to misdiagnosis. The lack of diverse language and culturally
rich datasets may produce bias in results. On top of this, models in this
approach did not suggest a combination of vocal data with other forms
of data, such as movement and medical imaging.

• Opportunities: Addressing these weaknesses can improve model
reliability. Employing noise reduction and advanced techniques in
speech analysis is essential. Moreover, using diverse databases that
reflect a variety of ethnicities and languages may improve the model’s
capabilities. The combination of acoustic data and other forms of data,
widely utilized to detect PD, may lead to a better resolution.

• Threats: Several vital concerns should be addressed in future work. As
the volume of data increases, maintaining standardization becomes
more challenging, which may directly impact the real-world applic-
ability of the models. Additionally, reliance solely on acoustic data
could lead to misclassification.

Medical imaging
Neurological disorders directly affect the brain; therefore, a visual brain
image can be suitable for detecting a disease82. PET and SPECT are two
approaches that can detect PD; however, they are less commonly utilized
due to their cost and invasiveness83. Nevertheless, alternativemethods, such
as dopamine transporters (DAT) scanned applying 123I-ioflupane and
magnetic resonance imaging (MRI), can be employed alongside ML for
detecting PD84. Table 9 presents the databases utilized in medical imaging,
including suchdetails as thenameof thedata source, typeof images, number
of samples, and additional information like the participants’ age and data
format. Table 10 compares the papers based on their main ideas, employed

tools, and algorithms, as well as their advantages and disadvantages.
Additionally, Table 11 provides the critical parameters used in the evalua-
tion process. Section “Review of medical imaging-based approaches”
reviewsmedical imaging-based approaches. In the end, a qualitative analysis
of approaches, including strengths, weaknesses, opportunities, and threats,
is performed in Section “Qualitative analysis of medical imaging-based
approaches”.

Review of medical imaging-based approaches. Zhao et al.85 pre-
sented a CNN-based method utilizing diffusion tensor imaging to assess
the diagnostic performance of a hybrid architecture for detecting PD
across multiple brain regions. The study also employed a greedy algo-
rithm to combine various areas for final prediction. The proposed
method demonstrated a high AUC according to the results. Likewise,
Shibata et al.86 suggested a model to identify moderate cognitive
impairment (MCI) in PD patients using quantitative susceptibility
mapping (QSM) images. The study utilized ML algorithms, including
light GB, extreme GB, and RF. The results indicated that RF achieved a
satisfactory level of performance and accuracy.

Gaurav et al.87 introduced a CNN-based framework for automatically
assessing and segmenting neuromelanin in the SN of early-stage Parkin-
son’s patients. According to the results, the proposed framework achieved
high accuracy and repeatability. Furthermore, the method could process
large datasets in a significantly shorter time. Also, Nakano et al.88 investi-
gated the effects of motor and non-motor symptoms on health-related
quality of life (HRQoL) and identified brain networks associated with using
MRI in Parkinson’s patients. Next, Dünnwald et al.89 suggested a CNN
model for automating the extraction of biomarker data from multi-rater
segmentation and multi-scale localization to detect individuals with PD.
They validated their approachby evaluating themodel usingmetrics such as
the DSC and Euclidean distance.

Adams et al.90 presented a technique to predict themotor performance
of individuals with PD. They employed CNN to interpret data from a
combination of DAT SPECT imaging and clinical measures, including
motor segment assessment. The results demonstrated that this DL-based
combination improved the prediction of movement performance in Par-
kinson’s patients. Also, Shin et al.91 presented an algorithm that employs a
DL-based CNN to interpret nigrosome 1 susceptibility map-weighted
imaging (SMwI) to assess nigrostriatal degeneration in idiopathic PD (IPD).
The results demonstrated that their proposed method provides rapid and

Table 9 (continued) | Medical imaging datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

83 Clinical 854 775 – – – – 1758 TCS images,
Accessed from Sep 2019 to May 2022

109 PPMI220,221 213 213 88 125 80 133 HC: average age (59.44 ± 11.33)
PD: average age (61.27 ± 9.71)
213 age-matched T1-weighted MRI scans,
Randomly selected

NEUROCRON229 27 16 10 17 12 4 HC: average age
(67.63 ± 11.89)
PD: average age
(68.13 ± 12.86)

Tao Wu dataset229 18 18 8 10 7 11 HC: average age
(67.63 ± 11.89)
PD: average age
(65.61 ± 4.45)

110 UK Biobank238 84 84 – – – – Two groups: Prevalent and Incident datasets,
Prevalent Dataset:
154 fundus images (77 PD, 77 HC),
Incident dataset:
92 images (46 PD, 46 HC)

In this table, we detailed all the datasets in papers and compared participant demographics (number, gender, and health status: #PD => Parkinson’s Disease, #HC => Number of Healthy Control
Participants, #PDF=>Number of Parkinson’s diseaseFemaleParticipants, #PDM=>Number of Parkinson’s diseaseMaleParticipants, #HCF=>Number of HealthyControl Female Participants, #HCM=>
Number of Healthy Control Male Participants).
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Table 10 | A comparison of medical imaging papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

85 PD diagnosis using diffusionMRI
and CNN

•SPSS software •Greedy algorithm
• CNN

• High AUC • Low scalability
• Not utilizing various scanners

86 ML-based model for PD
cognitive impairment
diagnostics

• FSL
• Python

• RF
• XGBoost
• LightGBM
• V-SHARP algorithm
•Grid search algorithm

• High accuracy • Insufficient validation
• Low scalability

87 CNN framework for SNPC
segmentation

•MATLAB
• FSL
• SPM
•MRtrix3
• R programming
• Python (Scikit-learn)

• CNN • High accuracy
• High AUC
•Reduced processing time for
large datasets

• High reproducibility

• No external validation
• Not evaluating the effects of
medicines on neuromelanin

• No SNPC topography analysis
• Low scalability

88 PD symptoms impact on HRQoL
and neural network mapping

• Python
• (Scipy, Python
factor_analyzer)

•MATLAB
• FSL
• ART

•Multiple regression
• RF

• A thorough analysis of the
various factors
affecting HRQoL

•Not analyzing parameters such as
accuracy and sensitivity

• Lack of sleep-related questions
• Lack of longitudinal studies about
patients

89 DL-based PD diagnosis via MRI
and locus coeruleus
classification

• Not mentioned • CNN • High precision •Not analyzing parameters such as
sensitivity

• Considering the limited amount
of data

90 DL-based motor performance
prediction in PD

• Python • CNN • High-performance
prediction

• Low scalability
• Not evaluating metrics such as
sensitivity and specificity

91 Deep complex neural networks
for classifying IPD

•MedCalc
• R programming

• CNN
• YOLOv3 algorithm

• High diagnostic
performance

• High accuracy

• Not investigating other CNNs
• Low scalability

92 Rs-fMRI and topological ML for
diagnosing PD

•MATLAB
• Python

• UMAP
• DNN
• SVM
• GB

• High accuracy • Lack of high-quality data
• Insufficient analysis of scanning
device and embedded
parameters

• Not evaluating classification
performance of different stages
of PD

93 DCNN model for dementia
diagnosis via FDG-PET

• Python • DCNN
• GAN
• Adam optimizer

• High accuracy
• High specificity
• High sensitivity

• Not investigating other types of
dementia

• Not assessing non-imaging
features

94 Interpretable DL model for PD
diagnosis

• ANT • CNN Jacobians
• N3
• SmoothGrad

• High accuracy
• High AUC(ROC)
• High precision
• High sensitivity
• High specificity

• Not investigating other DL
architectures

• Lack of utilization of multimodal
MRI data

95 3Dand2DCNN todistinguishPD
from healthy

• Python • 2D CNN
• 3D CNN

• High AUC
• High accuracy

• Not applying parallelization to
increase performance

96 Detection of PD using
parameter-weighted matrices

•MATLAB • CNN • High AUC (ROC) • Not able to detect at early PD
stages

• Lack of varied data
• Not verifying the model’s
effectiveness externally

97 ML-basedPDdiagnosis via I-123
FP-CIT scans

•MATLAB • SVM • High accuracy
• High sensitivity
• High specificity

•Applying a relatively small number
of patients

• Not considering additional
parameters

• Limited evaluation of diverse
methods

98 [18 F] DOPA PET/CT and CNN
for PD classification

• Python • CNN • High accuracy
• High specificity
• High sensitivity

•Not performing a regional analysis
• No neuropathologic confirmation

99 DL model for PD/HC separation
via FDG-PET

•MATLAB • Radiomatic DL • High accuracy • Lack of general data such as race,
and nationality
• Low scalability
• Not involving other kinds of data,
such as MRI

84 ML-based PD detection using
123I-ioflupane images

• Not mentioned • Gradient boosted
trees

• LR
• KNN

• High AUC • Not considering personal
information such as gender

• Low scalability
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precise results for IPD diagnosis. Similarly, Xu et al.92 presented a technique
using a topological ML approach and resting-state functional MRI (rs-
fMRI) data to develop a biomarker for early PD detection and treatment
evaluation. Based on the findings, the suggested method reached a high
degree of accuracy.

Noella and Priyadarshini93 introduced a DCNN-based model to
identify PD and AD using fluorodeoxyglucose PET brain scans. The results
showed that the model had high specificity, sensitivity, and accuracy. Fur-
thermore, Camacho et al.94 developed an explainable model to identify
Parkinson’s patients based onDLmethods utilizing T1-weightedMRI data.
The results of the presented model showed high precision and accuracy. In
the same vein, Vyas et al.95 introduced two distinct neural networkmodels, a
2D CNN and a 3D CNN, to detect PD using MRI scans. In addition, both
models demonstrated acceptable effectiveness and performance.

Yasaka et al.96 proposed a CNN model to assess the potential of
detecting PD individuals using parameter weighting and the number of
streamlines. Results showed moderate performance in terms of AUC.
However, the external validation of the presentedmodel’s performance had

not been conducted. Additionally, Dotinga et al.97 developed an SVM-based
model to distinguish PD patients from healthy people using I-123 FP-CIT
images. This model showed high accuracy, sensitivity, and specificity.

Piccardo et al.98 used a 3D CNN-based method combined with the
analysis of brain [18 F] DOPAPET/CT scans to diagnose PD. This method
showed acceptable accuracy and robustness. Moreover, Sun et al99. intro-
duced a radiomic DL model. This study used [18 F] FDG PET imaging to
diagnose PD, and the presented model showed significant accuracy.
Nakajima et al.84 proposed an ML approach to detect dementia and PD
based on 123I-ioflupane images. According to the results, the proposed
approach had a high AUC (ROC).

Huang et al.100 proposed a method for improving the diagnosis of PD
through emotional facial expressions and DL techniques. The presented
model was evaluated using four datasets and achieved high accuracy. Also,
Abdullah et al.101 introduced a framework based on TL to diagnose PD
through handwriting analysis. Features gathered from the model were
optimized using a GA. The evaluations showed high accuracy and effec-
tiveness of the framework. In the same light, Pang et al.102 employedML to

Table 10 (continued) | A comparison of medical imaging papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

100 DL model for PD detection via
facial expression

• Python (PyTorch) • StarGAN
• CNN

• High accuracy • Limited database diversity

101 DL approach for diagnosing PD
from handwriting

• Not mentioned • ResNet50
• VGG19
• INCEPTION-V3
• KNN

• High accuracy
• High precision

• Not analyzing F1-score and
specificity

102 Automatic PD subtype diagnosis
using SVM

• Python (Scikit-learn) • SVM
• LASSO
• SHAP

• High AUC • Low scalability
•No analysis of genetic biomarkers

103 DL-based PD classification
using MRI data

• Not mentioned • ResNeXt • High accuracy • Lack of clinical validation

104 DL framework for PD
classification via MRI

• Python (PyTorch) • CNN
• Adam optimizer

• High specificity
• High accuracy
• High sensitivity
• High F1-score

• Existence of uncertain details in
the model of DL

• Low scalability
• Not evaluating 3D imaging data

105 PD identification via DL on T1-
weighted and QSM scans

• Python (PyTorch)
• R programming

• SE-ResNeXt50
• CNN

• High AUC
• High accuracy

• Limited number of centers
• Low scalability
• Reduced performance due to
inaccurate segmentation

106 DNN-based PD diagnosis using
SPECT images

• Python (Scikit-Learn)
• OpenCV

• PARNet • High specificity
• High accuracy
• High sensitivity
• High F1-score
• High precession

• Low scalability
• Not examining a large domain of
patients

107 PD classification with CNN using
DaTSCAN images

• Not mentioned •MobileNet-V2
• EFFICIENTNET-B0

• High accuracy • Low scalability
• Potential overfitting issues

108 PD diagnosis with GNNs through
MRI scans

• Python (PyTorch) • GNN
• Sparsity
ATopk model

• High F1-score • Not evaluating multimodal data

83 DCNN-based PD diagnosis
using TCS images

• ImageJ software
• Python (PyTorch)
• R programing

• DCNN • High accuracy
• High PPV
• High F1-score
• High sensitivity

• Low scalability
• Retrospective and single-center
nature

• Not evaluating different PD
subtypes

109 The impact of CNN design and
data leakage on PD diagnosis
using MRI

• 3D Slicer
• FSL

• CNN
• N4 algorithm

• High accuracy • Unequal dataset conditions
• Limited to T1-weighted MRI
• Not using multicenter or
multimodal approaches

110 DL-based PD detection using
retinal fundus images

• Not mentioned • LR
• SVM
• Elastic Net
• ResNet50
• Inception-V3
• GoogleNet
• VGG-16

• High NPV
• High sensitivity

• Low scalability

This table includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages, and disadvantages.
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assess a model utilizing multi-level indicators of resting-state functional
magnetic resonance imaging (rsfMRI) for detecting different motor sub-
typesofPDpatients.Thefindings showed that theproposedmodel achieved
a notable AUC value.

Balnarsaiah et al.103 demonstrated a method for diagnosing PD based
on DL approaches applied to MRI data. The Residual network (ResNeXt)
architecturewasutilized in this study toclassify brainMRI images to identify
Parkinson’s patients. As a result, the suggested method demonstrated sig-
nificant accuracy in this research. Also, Xinchun Cui et al.104 presented a
method for classifying PD using MRI T2 slices. By combining DL with a
multi-branch feature processing module and multi-scale attention gui-
dance, the authors created a method to extract features to enhance classi-
fication performance. Based on the outcomes, the proposed method
obtained a high percentage of sensitivity, F1-score, accuracy, and specificity,
demonstrating its diagnostic efficacy.

Wang et al.105 offered an approachbasedonDL to detect PDwithQSM
and T1-weighted information automatically. The approach compromised
CNN and squeeze and excitation (SE)-ResNeXt50 models that analyze
image data. Evaluation results demonstrated the mentioned model’s per-
formance in terms of AUC. Also, Keles et al.106 offered a DNN model for
identifying PD patients by the SPECT images. They used 1231 images to
validate their models. Outcomes showed the quality of the model con-
cerning specificity, precision, accuracy, F1-score, and sensitivity. Besides,

Khachnaoui et al.107 presented a computer-aided system to diagnose PD via
pre-trained CNN models, bilinear pooling, and TL. These models were
trained by ImageNet. The results showed themodel’s performance in terms
of accuracy.

Zhang et al.108 presented a method for predicting PD using graph
neural networks (GNNs) applied to MRI data. This study addressed two
main issues: the efficiency of constructing graphs from MRI data and the
overfittingof small data.Also,Dinget al.83 developedamodified transcranial
sonography (TCS) technique employing the DCNN model to predict PD.
Further, thismodel demonstrated higher accuracy, sensitivity, PPV, andF1-
score. Moreover, Veetil et al.109 proposed a method using CNNmodels and
T1-weighted MRI data to diagnose PD. In addition, simulations were used
to investigate the problem of data leakage and high accuracy was also
achieved. Tran et al.110 developed DL models for diagnosing PD based on
retinal fundus images. Also, they achieved acceptable NPV and sensitivity.

Qualitative analysis of medical imaging-based approaches. The
narrow and critical review of medical-imaging-based approaches papers
derived key strengths, weaknesses, opportunities, and threats,
detailed below:
• Strengths: Two of the most apparent results of reviewing the medical

imaging-based approach are that first, via image analysis, a good
understanding of brain visualization and its relation to PD has been

Table 11 | Medical imaging evaluation metrics

Article Accuracy Sensitivity Specificity F1-
score

Precision AUC(ROC) NPV FPR MCC Standard
deviation

ICC MSE Pearson’s
correlation
coefficients

Euclidean
distance

DSC MAE

85 + + + + + + +

86 + + + + + +

87 + + + +

88 +

89 + + +

90 +

91 + + + +

92 + +

93 + + + +

94 + + + + +

95 + + + + +

96 + + +

97 + + + +

98 + + + + +

99 + + +

84 + + + + +

100 +

101 + + + +

102 + + + + + +

103 + + + +

104 + + + + + +

105 + + + + + +

106 + + + + + +

107 + + + + +

108 + + + +

83 + + + + + + +

109 + + + + +

110 + + + + + +

Plus (+) means the metric that has been evaluated in the paper, and blank cells mean the metric has not been evaluated in the paper.
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Table 12 | Movement data datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

8 239 PaHaW dataset240 29 18 9 20 8 10 PD: average 57.9
HC: average (61.6 ± 8.8)

241 PaHaW dataset240 29 26 13 16 14 12 HC: average age 39.31
PD: average age 66.80

242 PaHaW dataset240 35 29 13 22 11 18 HC: average age (64.5 ± 6.8)
PD: average age (67.2 ± 9.1)

4 Oxford Parkinson’s Disease
Telemonitoring Dataset243

– – – – – – 16 features,
5875 records,
2 outputs,
28M and 14 F patients

114 Daphnet Freezing of Gait Dataset244 10 – 3 7 – – PD: average age 66.40
Walking tasks:
Straight hallway, randomly initiating stops and turns, daily
activity

115 245 12 – 2 10 – – –

116 Clinical 4 4 – – – – Patients’ age 63, 67, 72, and 73

117 239 PaHaW dataset240 29 18 9 20 8 10 HC: average age (57.9 ± 6.7)
PD: average age (61.6 ± 8.8)

241 PaHaW dataset240 29 26 13 16 14 12 HC: average age 39.31
PD: average age 66.80

242 PaHaW dataset240 35 29 13 22 11 18 HC: average age (64.5 ± 6.8)
PD: average age (67.2 ± 9.1)

118 246 21 – 3 18 – – PD: average (69.3 ± 9.7)

247,248 38 21 – – – – 28M and 10 F,
Average age: (70.7 ± 8.2) years

249 59 – 22 37 – – Average age: (69.2 ± 10.2) years

119 Clinical 55 31 – – – – Total: 113 individuals
(56 M / 57 F),
13 with essential tremors,
4 with other diagnoses

120 Clinical 30 30 – – – – A total of 90 individuals,
Thirty Alzheimer’s patients

113 Clinical 42 24 – – – – 83 subjects
(41 M / 41 F),
13 with essential tremors,
2 with other tremor disorders,
2 undiagnosed,
Age range: 22–84 years

121 PaHaW dataset240 – – – – – – Handwriting: 75 (37 PD, 38 HC),
Spiral drawing: 69 (33 PD, 36 HC)

NewHandPD235 31 35 – – – – A total of 66 individuals

122 Clinical 18 – 7 11 – – The age range is from 60 to 84 years, the wearable
biomechatronic laboratory of Western University

123 Clinical 9 14 – – – – 33 participants,
10 with multiple sclerosis,
Self-paced treadmill walking tasks performed

124 Clinical 32 16 15 17 10 6 PD: aged from 52 to 84
HC: aged from 56 to 85

125 Clinical 45 45 15 26 18 25 3 PD and 2 control subjects were excluded,
PD: average age: (68.0 ± 9.9)
HC: average age: (67.0 ± 9.4)

126 Clinical – – – – – – 6 rats with medial forebrain bundle lesion,
6 normal rats as a control group

127 Clinical 6 6 – – – – A total of 12 individuals,
PD: average age 40
HC: average age 52,
Sensors to record the upper limb,
Goniometer-based upper limb tracking,
4 move tasks

128 Clinical 58 29 20 38 24 5 87 individuals

129 PhysioNet250,251 93 73 34 59 33 40 Average age: 66.3 years

130 Clinical 20 73 – – 30 43 A total of 93 individuals,
HC: average age 66.3
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attained. Secondly, it has become clear that CNN is one of the most
successful methods for PD diagnosis.

• Weaknesses: However, this approach has three major points: it is too
expensive due to the need for expertise and clinical tests such as MRI,
the techniques employed in this approach are primarily invasive, and it
needs high computational resources.

• Opportunities: Resolving these conflicts may increase the reliability of
medical-imaging-based approaches. Examining less invasive or non-
invasive techniques, making the applications broader. Also, more cost-
effective approaches, such as fMRI and DAT scans, can enhance
accessibility. Another way could be to combine imaging with genetics
or other data to increase the accuracy of diagnosis.Also, usingMLas an
interpreter for data instead of data analysts may reduce the costs.

• Threats: Nevertheless, bias may rise if we do not consider diversity in
gathering imaging data, so researchers should consider global
populations in their test samples. Another challenge is logistical and

ethical in gathering such information, which also needs to be
addressed.

Movement data
Movement datasets are divided into three categories: gait, tremor, and
movement111. Such information is mainly utilized to determine the severity
of the condition. First, monitoring gait data is significantly invaluable
because it can be gathered through wearable devices, which are primarily
low-cost112. Also, continuous data can help to find appropriate therapy for
the patient and examine its effectiveness. However, it cannot be a good
approach for diagnosing the disease. Second, tremors are uncontrollable
body shaking and are mainly misdiagnosed; suitable data by using ML can
reducediagnostic errors113. Themovementdatasets utilized in the examined
papers are detailed in Table 12, which includes the names and references of
the sources, the categories of movement data, descriptions of the features,
and information regarding the age and gender of the participants. We

Table 12 (continued) | Movement data datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

131 Clinical 63 63 – – – – –

132 Clinical 24 – – – – – PD: average age (74.1 ± 6.7)
HC: average age (74.1 ± 9.1)

252 37 – – – – – PD: average age (69.3 ± 10.9)
HC: average age (74.1 ± 9.1)

133 Clinical253 – – – – – – Total individuals 39,
25M, 7 F

134 254 42 43 – – – – PD: average age of 59.0
HC: average age of 60.1

255 100 130 – – – – –

135 239 PaHaW dataset240 29 18 9 20 8 10 HC: average age (57.9 ± 6.7)
PD: average age (61.6 ± 8.8)

241 PaHaW dataset240 29 26 13 16 14 12 HC: average age 39.31
PD: average age 66.80

242 PaHaW dataset240 35 29 13 22 11 18 HC: average age (64.5 ± 6.8)
PD: average age (67.2 ± 9.1)

136 256,257 332 100 – – – – –

137 258 37 38 – – – – –

138 NewHandPD235 31 35 – – – – 66 individuals

139 Clinical 24 24 – – – – 17 patients with other tremor-related neurological diseases,
44M and 39 F

140 Clinical 50 50 28 22 28 22 A total of 100 individuals,
HC: average age (63.3 ± 8.6)
PD: average age (63.6 ± 7.2)

112 Clinical 74 – 32 42 – – average age: 64.6
Collected data via 6 sensors,
gait (2 min),
sway (30 sec)

141 Clinical 276 79 81 195 50 29 Differential diagnoses: 114 individuals (57 M, 57 F),
Atypical Parkinsonism: 15 individuals (8 M, 7 F),
Essential Tremor: 28 individuals (18M, 10 F),
Multiple Sclerosis: 11 individuals (7 M, 4 F),
Other: 60 individuals (24 M, 36 F),
Data was collected from 2018 to 2021

142 Neuro254 42 43 – – – – Five datasets combined into two datasets: Comb_Tappy and
Comb_Neuro

PhysioNet250,251 159 51 – – – –

Timisoara259,260 – 80 – – – –

BB-MAS261 – 117 – – – –

Buafo262 – 148 – – – –

143 263 93 73 34 59 33 40 –

In this table, we detailed all the datasets in papers and compared participant demographics (number, gender, and health status: #PD => Parkinson’s Disease, #HC => Number of Healthy Control
Participants, #PDF=>Number of Parkinson’s diseaseFemaleParticipants, #PDM=>Number of Parkinson’s diseaseMaleParticipants, #HCF=>Number of HealthyControl Female Participants, #HCM=>
Number of Healthy Control Male Participants)

https://doi.org/10.1038/s41531-025-01025-9 Review article

npj Parkinson’s Disease |          (2025) 11:187 21

www.nature.com/npjparkd


Table 13 | A comparison of movement data papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

8 PD diagnosis and severity
evaluation using MCSVM

•MATLAB •MCSVM
• SVM kernel functions
(linear, polynomial, cubic,
and quadratic)

• High accuracy
• High specificity
• High sensitivity

• Lack of non-motor symptom
evaluation

• Not analyzing metrics such as recall
and cost

4 DL and neuro-fuzzymodel for PD
detection

•MATLAB • DBN
• KNN
• ANFIS
• EM
• PCA

• Low time complexity
• High accuracy

• Not evaluating parameters such as
sensitivity and recall

114 FOG prediction in PD using
ResNeXt

• Python (Pytorch) • ResNeXt
• SMOTE
• Adam optimizes

• High accuracy
• High sensitivity
• high specificity

• Low scalability

115 Analyze real-world gait tests in
PD patients

• Not mentioned • SDTW • High F1-score
• High recall
• High precision

• Lack of analysis of gait trials

116 Analysis of sEMG signals and
hybrid DTL for diagnosing PD

•MATLAB • CNN
• SVM
• SGD
• Propagation (RMSprop)

• High accuracy
• High specificity
• High sensitivity

• Low scalability

117 Assessing PD severity via the
EnKNN approach

• Python • EnKNN • High accuracy • Low scalability

118 Real-time FOG detection in PD
using CNN

•MATLAB
• Python
• Keras-flops

• CNN • Low computational
complexity

• Low processing time
• High performance
• Reducing memory
usage

• High AUC
• High predicting ability

• No integration with a standalone
device for home environment

• Utilization of raw input data

119 Early PD detection using
wearable sensors and ML

• Not mentioned • LightGBM
• RF

• High precision
• High F1-micro
• High AUC

• Lack of additional data types such as
video/images

120 CNN for PD andAD classification • R programming
• Python

•Multi-layer CNN
• LDA
•MLP

• High accuracy • Lack of evaluation on imbalanced
datasets
• Low scalability

113 PD symptom detection through
video analysis

• Python (Scikit-learn)
• OpenCV

• LR
• XGBoost
• RF
• SVM
• Gaussian process
classifier

• High F1-score • Lack of consideration of datasets
with varied disease

• Not examining the data with other
models, such as CNN

121 Handwriting analysis via CNN for
PD diagnosis

• Not mentioned • CNN • High accuracy • Not investigating alternative
architectures

• Low scalability

122 Movement management in PD
patients using DL

• Python • DNN • High accuracy • Lack of minimizing the model effect

123 DL method to distinguish MS
from PD via gait

• Python (PyTorch) • CNN
• RNN
•MS-ResNet

• High accuracy
• High AUC

• Low scalability

124 Neural network–based early PD
detection via gait data

• Not mentioned • Neural network • High accuracy • Trainingmodel with a limited number
of patients

• Low scalability

125 Motor symptom–based PD
detection using ML

•MATLAB
• Python

• Lasso
• LR
• RF
• DT
• SVM
• KNN
• XGBoost
• Linear Regression

• High accuracy
• High AUC (ROC)

• Low scalability

126 PD severity assessment via DL
on movement data

• Python • CNN-BGRU • High accuracy • Not analyzing parameters such as
AUC (ROC) and specificity

• Lack of clinical validation

127 ML-based detection of PD using
upper limb motion

•MATLAB • DT
• RF
• KNN
• SVM
• NB

• High accuracy
• High sensitivity
• High specificity
• High AUC (ROC)

• Low scalability
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Table 13 (continued) | A comparison of movement data papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

128 Analyzing copied figures with
CNN to detect PD

• Python (NumPy,
Pandas)

• CNN • High accuracy
• High specificity

• Low scalability

129 Analyzing VGRF gait data via ML
to detect PD

• Not mentioned • SVM
• KNN
• NB
• DT
• ELA

• High accuracy • Low scalability
• Neglecting all gait signals but VGRF

130 Learning architecture for PD
diagnosis

• Python
• CUDA
• cuDNN

• CNN
• ARR
• XGBoost
• SMOTE

• High accuracy
• Low training time

• Low scalability

131 Gait-based
PD detection and stages withML
models

• Python (NumPy,
Matplotlib, Scikit-
learn, Pandas,
Seaborn)

• NB
• SVM
• DT
•MLP
• LR
• RF
• SMOTE

• High accuracy
• High precision
• High AUC (ROC)

• Low scalability
• Not evaluating other motor and non-
motor symptoms

• Lack of tremor analysis in gait
classification

132 Extracting diagnostic features
from spiral drawings using ML

• Python (Scikit-learn) • LR
• SVM
• KNN
• DT
• RF
• AdaBoost
• SVM-RFE

• High predicting ability
• High specificity
• High accuracy
• High sensitivity

• Low scalability
• Lack of symptom severity
assessment

• Not evaluating other tasks related to
handwriting and drawing

133 Unsupervised uTUG-based gait
assessment for PD using ML

• GroupKFold
• GridSearchCV
• Python (Scikit-learn)

• NB
• SVM
• RF

• High accuracy
• High recall
• High sensitivity
• High F1-score
• Not requiring manual
annotation

• Not evaluating adverse drug
reactions

• Lack of additional sensor data
• Incomplete evaluation of at-home
completion time

134 Balanced ensemble learning for
PDdiagnosis utilizing KDdataset

• R programming • XGBoost
• KNN
• NB
• LSTM
•MLP
• SVM

• High sensitivity
• High specificity
•Ease of integrationwith
conventional desktops
• High robustness
• High AUC

•Not investigatingdiseases that affect
typing quality

• Not assessing the impact of factors
such as age, emotional tension, and
keyboard layout experience on
typing

• No evaluation of wearable and
mobile sensors for improved data
collection

•Not evaluating the severe level of the
disease

135 Ensemble DT and gait features
for PD detection

• Not mentioned • RF
• GB
• DT

• High accuracy
• High F1-score
• High sensitivity
• High specificity
• High precision

• Low scalability

136 ML-based PD diagnosis using
gait and movement data from
wearable sensors

•MATLAB • Random under-sampling
boosting

• Neighborhood
component analysis

•mRMR
• RF
• DT

• High sensitivity
• High specificity
• High AUC

• Low scalability
• Lack of generalization assessment
to other motor disorders

• Lack of evaluation of motor
fluctuations

137 Kinematic handwriting features
and ML for PD diagnosis

• Python • RNN
• LSTM
• BLSTM
• Adaboos
• BRF
• SVM
• LDA
• PCA
• Bayesian optimization
algorithm

• Adam optimizes

• High accuracy
• High precision
• High recall

• Not analyzing diverse handwriting
datasets

• Low scalability

138 PD detection by using
handwriting and neural network

• Python (Tensorflow) • NB
• RF
• DT
• LR
• KNN
• GBDT
• CNN
• BLSTM
• LSTM

• High accuracy • Not expanding image datasets
sufficiently
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tabulate the main ideas, applied algorithms, tools, advantages, and dis-
advantages in Table 13. Table 14 also includes assessment parameters for
the reviewed studies, such as accuracy, sensitivity, specificity, and F1-score.
In Section “Review of movement data-based approaches”, movement data-
based approaches are reviewed. Additionally, Section “Qualitative analysis
of movement data-based approaches” presents a qualitative analysis of
movement data-based approaches, including their strengths, weaknesses,
opportunities, and threats.

Review ofmovement data-based approaches. Vidya and P8 offered a
method aimed at detecting and classifying the severity of PD. The pro-
posed approach uses a multi-class support vector machine (MCSVM)
along with gait data analysis. This method showed high accuracy and
sensitivity. Plus, Nilashi et al.4 suggested a method that combined the
deep belief network (DBN) and adaptive neuro-fuzzy inference system
(ANFIS) to improve the accuracy of forecasting the unified PD rating
scale (UPDRS) and diagnosing PD. Additionally, the results demon-
strated a significant reduction in time complexity while enhancing pre-
diction accuracy in the proposed approach, thereby supporting the early
diagnosis of PD through precise and efficient UPDRS prediction. Also,
Hua Sun et al.114 presented an approach for forecasting FOG in PD by
integrating deep features acquired via the ResNeXt network with
manually selected gait features. The results demonstrated that the
approach exhibited high specificity, sensitivity, and accuracy.

Ullrich et al.115 developed an algorithmic approach utilizing inertial
measurement units (IMU) to evaluate and diagnose Parkinson’s patients’
gait tests. This study aimed to reduce patient interaction with the recording
system and reduce the amount of manual data annotation performed by
researchers. In addition, this algorithm achieved a high F1-score, recall, and
precision. Additionally, Rezaee et al.116 proposed an ML-based approach,
incorporatingdeep transfer learning (DTL)using electromyographic signals
for PD diagnosis. Moreover, the presented method achieved high accuracy
and sensitivity.

Zhao et al.117 introduced a method to detect the severity level of PD
through gait data and the ensemble K-nearest neighbor (EnKNN) algo-
rithm. The suggested method effectively handles the imbalanced data

distribution from Parkinson’s patients. Additionally, the proposed EnKNN
exhibited favorable performance and accuracy compared to othermethods,
as demonstrated by the results. Besides, Borzì et al.118 used a multi-headed
CNN for detecting freezing of gait (FOG) in PD. The method utilized
inertial sensor data. Plus, this study fastened processing times, minimized
memory usage, and high accuracy. Likewise, Shcherbak et al.119 introduced
an approach for diagnosing early-stage PD (phases 1 and 2) using wearable
sensors, movement data, and ML. Overall, distinguishing between healthy
individuals and stage 2 patients resulted in improved outcomes, including
higher F1-micro scores and precision.

Pedrero-Sánchez et al.120 suggested a multi-branch CNN-based
method to classify PD and Alzheimer’s patients from healthy subjects using
functional mobility test data. The results showed that the proposedmethod
provided higher accuracy than parameter-based methods. Moreover,
Kovalenko et al.113 presented an approach to detect PD in essential tremors
utilizing ML techniques by analyzing video data. Further, this approach
obtained a high F1-score.

Gazda et al.121 presented a model that diagnosed PD by evaluating
people’s handwriting using CNN. Experimental results confirmed the
high accuracy of the mentioned model. However, the authors did not
investigate their approach with larger datasets or employ any other net-
work architecture. Similarly, Ibrahim et al.122 offered a neural network
model capable of predicting PD motions across multiple stages and
minimizing delay using tremor data. Based on the evaluation results, the
model was highly accurate. Similarly, Kaur et al.123 utilized the data on
walking patterns to classify Parkinson’s and multiple sclerosis patients.
Additionally, they evaluated different DL and ML methods, while CNN
showed higher accuracy.

Lin et al.124 proposed a neural network-based method that utilizes
movement data for the early detection of PDand classificationof its severity.
This model demonstrated high accuracy. Also, Exley et al.125 presented a
method for measuring PD symptoms usingML and quiet standing data. In
thismethod, the AUC (ROC)was high. Furthermore, Li et al.126 presented a
DL-based framework to identify PD in rats with brain abnormalities. The
authors collected 3D movement data and employed DL for classification.
The evaluated results indicated the high accuracy of the model.

Table 13 (continued) | A comparison of movement data papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

139 ML-based PD diagnosis by
analyzing exercise effectiveness

• Python • PCA
• ICA
•MDS
• RF
• LR
• NB
• Boosted trees
• KNN
• Stacked ensemble model

• High AUC (ROC)
• Low hospitalization
cost

• Reduce diagnosis time

• Small and imbalanced dataset
• Sensors with limited battery life
• Wireless connection problems
• Lack of comfort for people with
advanced PD to wear sensors

140 PD detection via CNN based on
daily gait patterns

• Python • CNN • High accuracy
• High AUC

• Not distinguishing the level of PD
• Not evaluating other forms of
movement except walking

112 Monitoring PD motor symptoms
using ML methods

• Python
•MobilityLab software

• LR
• RF
• PCA

• High RMSE • Low scalability

141 PD detection via ML approaches • Python • SVM
• FNN
• CatBoost
• BOSS
• XceptionTime

• High accuracy • Small sample size for validation
• One-Time clinical assessment

142 PD diagnosis using keystroke
dynamics data

• Not mentioned •MFDFA
• CNN

• High accuracy
• High sensitivity
• High specificity

• Low scalability

143 LSTM-based classification of PD
using walking data

• Not mentioned • LSTM
•MCOA

• High accuracy • Low scalability

This table includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages, and disadvantages.
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Cesarelli et al.127 investigated the predictive capability of upper limb
features using ML algorithms to differentiate between normal people and
those with PD. This study achieved high accuracy. Besides, Alissa et al.128

presented a CNN-based system for detecting PD based on drawing data. As
a result of the proposed method, high accuracy was demonstrated. Addi-
tionally, Wang et al.129 developed an ML-based hybrid signal-processing
approach for the detection and severity estimation of PD. Five differentML
methods were evaluated in this study. The accuracy evaluation results
showed the high performance of the SVM model.

Ma et al.130 provided an interpretable architecture usingDLmodels and
stepping-shoepressure sensors for the early detectionof PD.Results showed
that the proposed architecture achieved high identification rates and
accuracy. Additionally, Ferreira et al.131 developed an approach aimed at
improving PD diagnosis and stage identification. This study evaluated five
ML methods and analyzed the spatial-temporal characteristics of gait. The
presented approach showed acceptable accuracy and AUC (ROC).

Valla et al.132 extracted tremor-related features from the archimedean
spiral drawing test to improve PD diagnosis through ML methods. The
authors employed filter methods like Fisher’s score and wrapper methods
like RFE for relevant feature selection. The method demonstrated high
accuracy, specificity, and sensitivity in the results. Furthermore, Tavares
et al.133 introduced an unsupervised algorithmic pipeline called uTUG,
which employed IMUs for motor assessment and PD diagnosis. Their
method significantly enhanced precision, sensitivity, and F1-score in
detecting timed up-and-go (TUG) assessments using ML algorithms.

Soumen Roy et al.134 introduced an ML model that utilized keystroke
dynamics (KD) features during text typing on a conventional keyboard. The
model employed a bootstrap-based homogeneous ensemble classification
architecture alongwithML techniques to detectPD in itsDe-novo and early
stages. Among the ML methods examined, XGBOOST exhibited superior
performance. Moreover, the proposed model exhibited notable sensitivity
and specificity. Also, Huan Zhao et al.135 proposed amethod to diagnose PD
byanalyzingdistinct gait pattern characteristics. They identified features like
asymmetry index,mean, and coefficient variance fromParkinson’s patients’
gait patterns. Also, ensemble DT made an improvement in the diagnostic
process and accuracy. In the same light, Mirelman et al.136 introduced a
method that uses the data from wearable sensors and natural language
approaches to identify the gait andmobility criteria of different stages of PD.
This study aimed to specify optimal sensor locations for each disease stage,
and the results showed high sensitivity, specificity, and AUC for the pro-
posed method.

Kumar et al.137 presented this study to identify the handwriting
dataset’s most effective task and establish a reliable diagnosis method.
The authors employed two variants of RNN, a DL technique based on
bi-directional long short-term memory (BLSTM) and LSTM. In
addition, the kinematic properties obtained through various ML
approaches were examined. The proposed procedure was highly
accurate, based on the outcomes. Besides, Zhao et al.138 introduced a
neural network approach to detect PD by classifying individuals’
handwriting. The comparison results reveal that the presented model
performs better than its counterparts. Nevertheless, the size of the data
could be expanded to improve.

Talitckii et al.139 presented a method for identifying the most effective
exercises for diagnosing PD using ML approaches and wearable sensors.
Three of the 15 common exercises with the highest discrimination power
achieved a high AUC (ROC) score. In addition, this method could improve
PD diagnosis, reduce hospitalization costs, and reduce the time required for
diagnosis. Moreover, Chen et al.140 implemented an optimizable model
using CNN architecture to detect PD accurately from daily walking and
adapt according to themost indicative spatiotemporalmotor characteristics.
The data was gathered from 100 subjects while walking 10 meters, mon-
itored by five sensors attached to their bodies. Moreover, the results indi-
cated high accuracy and AUC for the model.

Sotirakis et al.112 offered an approach to monitor the progression of
motor symptoms in Parkinson’s patients usingMLmethods. Also, the data

usedwas gathered fromwearable sensors. This study obtained an acceptable
RMSE. Besides, Varghese et al.141 investigated different ML methods in
order to diagnose PD and differential diagnosis. Furthermore, they pre-
sented a movement dataset from wearable technologies to help develop
accurate diagnostic tools. This study achieved acceptable accuracy. Also,
Yang et al.142 introduced a method based on multi-level ensemble learning
using keystroke dynamics for PD diagnosis. The presentedmethod showed
high accuracy. Cuk et al.143 offered an approach for early detection of PD
using LSTM neural networks and gait data. The results showed that this
approach was highly accurate.

Qualitative analysis of movement data-based approaches. In this
section, we critically analyzed the selected paper on movement-based
approaches. Also, the classification of strengths, weaknesses, opportu-
nities, and threats has been detailed:
• Strengths: The qualitative assessment of the selected papers in

movement-based approaches led us to conclude that continuous
patient monitoring aids in real-time assessment of PD and directly
captures hallmark symptoms. The key advantage of movement-based
approaches is online data gathering, which is done by applying
wearable sensors.

• Weaknesses: On the contrary, although highly accurate sensors may
improve understanding of PD, they are expensive and may not be
available to everyone. Capturing data in controlled environments may
increase bias and cause other symptoms to be overlooked.

• Opportunities: One of the key areas researchers should focus on is
developing more affordable and high-tech wearable sensors to ensure
their availability for everyone. Moreover, combining these data with
vocal and biomarker data will help to get reliable and more accurate
results. These real-time datasets should also be used extensively for PD
progression monitoring and patient management.

• Threats: However, there are concerns about the privacy of continually
gathering PD patients and data sharing. Also, low-quality sensors
directly impact the mode performance, and the result may be
undermined.

Biomarkers
Parkinson’s latest reports suggest that the combination of genetic and
abnormal brain activity can contribute to the development of the disease6.
The analysis of genes and identification of key genetic and brain malfunc-
tions accelerates PD detection, facilitating early diagnosis in potential
patients144. This approachmay enable the development of targeted therapies
that address the specific genetic and brain-related factors associated with
PD. Table 15 provides a summary of the biomarker datasets utilized in the
reviewed articles, detailing the types of biomarkers, extracted features,
demographic information, analyticalmethods, and sampling types.Table 16
presents themain ideas of the papers, applied algorithms, tools, advantages,
and disadvantages. Additionally, Table 17 compares several evaluation
metrics, such as accuracy, specificity, and sensitivity.

Section “Review of biomarker-based approaches” reviews biomarker-
based approaches. In the end, a qualitative analysis of approaches, including
strengths, weaknesses, opportunities, and threats, is performed in Section
“Qualitative analysis of biomarker-based approaches”.

Review of biomarker-based approaches. Arora et al.1 compared dif-
ferent ML techniques to detect PD through amino acid composition and
hydrophobicity. In the proposed approach, the recall and F1-score were
high. Likewise, Xie et al.6 proposed a model that combined ML techni-
ques, such as RF models and ANN, to diagnose PD. They also investi-
gated the role of immune cell infiltration in PD. Moreover, Göker et al.145

developed a DL-based method for detecting PD in its early stages using
EEG signals. In order to create the automatic model, welch spectral
analysis was combined with BLSTM. Also, based on the outcomes, this
method attained high scores for the evaluation criteria like precision,
specificity, MCC, accuracy, sensitivity, and F1-score.
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Table 15 | Biomarker datasets

Article Repository/ Source #PD #HC #PDF #PDM #HCF #HCM Information

1 GEO databases264,265 – – – – – – Protein sequences from NCBI & UniProt (FASTA file
format),
removed duplicates and incomplete sequences,
Dataset: 640 PD-related and 1010 non-PD sequences

6 GEO databases264 35 28 – – – – Training sets: GSE20163, GSE20164, GSE42966,
validation: GSE26927

145 266 14 14 – – – – 16 F and 12M

146 UC San Diego dataset267,268 15 16 8 7 9 7 HC: average age (63.5 ± 9.6)
PD: average age (63.2 ± 8.2)

147 Clinical 20 21 10 10 10 11 HC: average age (67.5 ± 6.4),
PD: average age (67.6 ± 7.0),
University of British Columbia

148 269,270 24 24 – – – – HC: average age (69.33 ± 9.78)
PD: average age (69.75 ± 8.91)

149 Clinical 104 11 – – – – PD: average age (59.43 ± 12.15)
HC: average age (57.26 ± 9.15)

144 271–276 – – – – – – Gene expression data from GEO: GSE18838,
GSE57475, GSE72267, GSE99039, and GSE6613,
406 PD samples,
336 HC samples

150 Clinical 39 40 17 22 12 28 HC: average age (59.00 ± 4.54)
PD: average age (61.31 ± 6.01)

151 277 25 25 9 16 9 16 PD: average age (69.98 ± 8.73)
HC: average age (69.32 ± 9.58)
Cognitive Rhythms Lab (UNM),
collecting data in 2015

278,279 20 20 11 9 12 8 PD: average age (69.80 ± 7.60)
HC: average age (67.80 ± 6.35)
Information was gathered at the University of Turku in
Finland

152 280 24 24 – – – – –

153 Clinical 19 – – – – – –

154 PPMI220 490 197 – – – – HC: average age 61.3
PD: average age 62

Clinical 59 31 21 38 17 20 From 2015 to 2018

155 Clinical 187 125 76 111 67 58 –

156 Clinical 31 13 16 15 6 7 –

157 SEED-IV281 – – – – – – SEED-IV dataset with 15 subjects,
Evaluated using film clip stimuli,
Emotions: happy, neutral, fearful and sad

AMIGOS282 – – – – – – AMIGOS dataset:
33 subjects, auditory and visual stimuli
Two trial types: short and long videos

283 20 20 11 9 10 10 Multimodal stimuli: images, audio, video
Mean age: 58.7

158 UC San Diego dataset267,284 16 10 8 8 9 1 PD: average age 58.7
HC: average age 63.5 ± 9.6

159 Clinical 29 – 20 9 – – Female average age: 62
Male average age: 63

160 285 23 26 7 16 13 13 10 patients with ICD
(8M and 2 F)

161 GEO databases264 20 20 10 10 12 8 GEO datasets: GSE8397, GSE20292, GSE20163,
GSE20164, and GSE49036,
Average age (68.2 ± 7.2)
Average age (66.0 ± 12.8)

162 Clinical 65 65 9 56 9 56 Parkinson’s patients were selected from Juntendo
University Hospital, Tokyo, Japan,
The first cohort included de novo PD patients
(HC: average age (62.2 ± 11.8)
PD: average age (61.7 ± 11.4)
The second cohort included male PD patients with and
without medication
(HC: average age (66.8 ± 9.08)
PD: average age of (64.2 ± 10.6)
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Table 15 (continued) | Biomarker datasets

Article Repository/ Source #PD #HC #PDF #PDM #HCF #HCM Information

163 UC San Diego dataset267,286,287 15 16 8 7 9 7 Collected from the University of San Diego,
EEG was recorded in the resting state

270 27 27 17 10 17 10 Collected from the University of New Mexico (UNM)

164 PPMI220 294 154 99 195 58 96 PD: average rage (61 ± 9.7)
HC: average rage (60.3 ± 11)

PDEP288 263 115 112 151 64 51 PD: average rage (64.3 ± 8.6)
HC: average rage (63.6 ± 9.5)

165 National Health Insurance Service-Health
Screening (NHIS-HEALS) database289

1102 1102 505 597 492 610 Adults aged 40 and older,
data includes lab and anthropometric measures, sex,
lifestyle, socioeconomic status

166 PPMI220 423 – – – – – The dataset consisted of de novo PD patients

167 Loyola University Chicago (LUC), Clinical 29 165 11 18 64 101 ECG data from individuals aged 26–89 years,
MLH dataset: collected 2015–2020,
LUC dataset: collected 2014–2020University of Tennessee-Methodist Le Bonheur

Healthcare (MLH), Clinical
131 1058 54 77 496 562

168 PPMI220 697 – – – – – Patients assessed before dyskinesia onset

In this table, we detailed all the datasets in papers and compared participant demographics (number, gender, and health status: #PD => Parkinson’s Disease, #HC => Number of Healthy Control
Participants, #PDF=>Number of Parkinson’s diseaseFemaleParticipants, #PDM=>Number of Parkinson’s diseaseMaleParticipants, #HCF=>Number of HealthyControl Female Participants, #HCM=>
Number of Healthy Control Male Participants).

Table 16 | A comparison of biomarkers papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

1 Ensemble algorithm for PD
diagnosis using protein
sequences

• Python • DT
• NB
• SVM
• KNN
• LR
• RF
• AdaBoost
• GB

• High accuracy • Not analyzing parameters such as
specificity and MCC

6 PD diagnostic model using ML
and immune infiltration data

• R programming • ANN
• RF
• RMA

• Identifying the crucial genes
• High AUC (ROC)

• Low scalability

145 DL-based PD diagnosis using
EEG data

• Not mentioned • BLSTM • High specificity
• High precision
• High F1-score
• High accuracy
• High sensitivity
• High MCC

• Limited diversity in age groups and races

146 PD diagnosis using resting-state
EEG signals

• Python • KNN
• RF
• ET
• LightGBM
• XGBoost
• QDA

• High accuracy • Low scalability
•Manual removal of artifacts
• Limited spatial resolution

147 CRNN-based PD diagnosis
using EEG signals

• Python • GRU
• CNN
• CRNN

• High accuracy
• High recall
• High precision
• Automatic feature learning
without additional
processing of data

• Low scalability
• Limited interpretability

148 PD detection via ASGCNN on
EEG data

• Not mentioned • FASTER algorithm
• ASGCNN
• LSTM
• Adam optimizer
• ICA

• High accuracy
• High precision
• High recall
• High F1-score
• High Kappa

• Low scalability

149 Metabolomics-based PD
diagnosis using ML

•MetDNA
• Compound
discoverer software
• QIAGEN
• IPA

• PLS-DA
• RF
• XGBoost
• LASSO
• Ridge regression
• QC-RLSC

• High accuracy
• High AUC (ROC)

• Low scalability

144 PD diagnosis using gene
expression data and ML

• R programming • LASSO
• Ridge regression
• NB
• RF
• KNN

• High accuracy
• Integrating datasets from a
variety of sources

• Lack of analysis of other types of PD
• Not integrating additional datasets
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Table 16 (continued) | A comparison of biomarkers papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

• DT
• SVM
• LR

150 EEG-driven PD classification
using ML

•MATLAB • FastICA algorithm
• CNN
• SVM

• High accuracy
• Short training time

• Lack of subgroup evaluation based on
PD clinical stages

• Low scalability
• Lack of evaluation of advanced feature
selection methods

151 DCNN-based model to study
patho-electrophysiology
via EEG

•MATLAB
• FieldTrip

• DCNN
• Grad-CAM

• Generalizability • Limited to small dataset performance
• Low accuracy

152 PD diagnosis using Hjorth
features and ML approaches

•MATLAB
• EEGLab

• SVM
• KNN
• RF

• High accuracy
• High TPR
• High AUC

• Low scalability
• Limited comparison with other feature
extraction techniques, such as the
coefficients of the fast Fourier transform

153 CNN-GA-KNN model for
improving STN localization
using LFP

•MATLAB • CNN
• ResNet18
• VGG16
• KNN
• GA

• High accuracy
• High sensitivity
• High AUC (ROC)

• Low scalability

154 PD detection using ML and non-
motor symptom data

• Python
•Weka

• AdaBoost
• Bootstrap
aggregating
• DT
• KNN
•MLP
• NB
• RF
• RIPPER
• SVM

• High accuracy
• High F1-score

• Limited to non-motor information
• Small sample size
• Bias in data collection

155 DLmodel for PD detection using
metabolic fingerprint

• Not mentioned • LASSO
• LR
• XGBoost
• SVM
• RF
• AdaBoost

• High AUC
• High specificity
• High sensitivity

• Low scalability

156 EEG analysis methods for PD
diagnosis and monitoring

•MATLAB
• Python
•Wavelet toolbox

• DRSN
• TQWT
•WPT

• High performance in the
analysis of non-stationary
signals

• High accuracy
• High F1-score
• High recall
• High specificity
• High precision

• Decreased accuracy with more
categories

• No assessment of short- and long-term
memory networks

• Low scalability
• Lack of standardized EEG data

157 DL-driven architecture for
identifying emotional states
in PD

•MATLAB • CRNN
• 1D-CNN
• LSTM
• ELM

• High accuracy • Low scalability

158 ML/DL-based model for PD
detection using EEG

• Not mentioned • 1D-PDCovNN
Model
•MLA
• XGBoost
• ICA

• High accuracy • Lack of detecting PD by the model in
similar signals

• Low scalability

159 EEG-driven PD diagnosis
using DNN

• Not mentioned • CNN
• DNN
• STMIM
• Grad-CAM

• High accuracy •Not considering different subtypes of PD
• Limited clinical data were taken into
account

160 ML approach for ICD detection
in PD using EEG data

•MATLAB
• EEGLab

• SVM
• SVR
•mRMR

• Low cost • Low scalability

161 Biomarker and therapeutic gene
identification for PD diagnosis

• R programming • RF
• SVM-RFE
• PCA
• LASSO

• High accuracy • Low scalability
• No assessment of gene-level
mechanistic function

162 ML-based PD diagnosis using
sebum RNA profiles

• Python
• R programming

• ERT
• PCA

• High AUC (ROC) • Low scalability

163 PD diagnosis using MLmethods
and DWT

•MATLAB • DWT
• LR
• LDA
• KNN

• High accuracy
• Less memory usage
• Low execution time

• Low scalability
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Lal et al.146 developed and evaluated an architectural pipeline for PD
diagnosis using resting-state EEG. This paper suggested utilizingMLmodels
with a focus on the KNN classifier. In addition, their method achieved high
accuracy. Also, Soojin Lee et al.147 presented a model based on a CRNN
composedof RNN,CNN, andgated recurrent units (GRUs) utilizing resting-
stateEEG.Additionally,CRNNdisplayedhigh recall, precision, andaccuracy.

Chang et al.148 developed an attention-based sparse graph convolutional
neural network (ASGCNN) approach for early PD detection using electro-
encephalography (EEG) signals. This study uncovered statistically significant
disparities between patients with PD and healthy individuals. The proposed
method obtained high levels of recall, accuracy, precision, and F1-score,
according to thefindings of the study.Additionally,Wang et al.149 suggested a
urine sample-based method for detecting PD to identify specific metabolites
as biomarkers for PD and a predictive model use ensemble ML techniques.
This study identified eight metabolites that could distinguish between PD
patients and healthy people using a combination of metabolomics and ML
assessments. Based on the results, thismethodhad a highAUCand accuracy.

Bhandari et al.144 presented an approach for diagnosing PD using
blood-based gene data. This study employed ridge regression and LASSO
for feature selection, alongside various ML methods—particularly LR and
SVM—for data classification. In addition, the SHAP method was used to
identify the essential genes responsible for diagnosing PD. According to the
results, the proposed method provided high accuracy. Yang and Huang150

conducted a study to evaluate the efficacy of CNN and SVM in categorizing
individuals with PD based on resting-state EEG data. The results demon-
strated that the CNN approach outperformed SVM by effectively identi-
fying important features, shortening the training time, and achieving higher
levels of accuracy.

Shabanpour et al.151 developed a multivariate and data-driven model
utilizingDCNN to analyze EEGdata and identify spatial oscillatory patterns
associated with PD. The model was intended to improve understanding of
the brain physiology in PD while creating clinically interpretable topo-
graphical maps. In the same vein, Oliveira Coelho et al.152 proposed a

diagnostic model for PD using Hjorth features derived from EEG signals.
Patients with PD exposed to auditory stimuli had their data analyzed using
SVM, KNN, and RF. Results demonstrated the model’s high accuracy in
distinguishing Parkinson’s patients from healthy individuals, particularly
when SVM was utilized.

Hosny et al.153 suggested a DLmodel founded on CNN-GA-KNN that
improved the localization of the subthalamic nucleus (STN)using localfield
potentials (LFP) in patients with PD. The suggested model used a CNN to
extract features and theGA to select features. In addition, KNNwas used for
classification. Furthermore, the results showed that this model was highly
accurate. Additionally, Martinez-Eguiluz et al.154 developed ML models for
the early diagnosis of PD using non-motor symptoms, such as autonomic
dysfunction and depression. They evaluated the models using two data-
bases, namely PPMI and Biocruces. SVM andMLP demonstrated themost
promising results among all the algorithms.

Xu et al.155 proposed a DL-based system that investigated the meta-
bolites and small molecules in saliva to detect PD at early stages (Hoehn-
Yahr stage 1-2.5). Thementioned algorithmused 312 samples for validation
purposes, and the results demonstrated its performance in terms of AUC,
sensitivity, and specificity. Also, Zhang et al.156 introduced two methods for
classifying clinical sleep EEG data, namely wavelet packet transform with
deep residual shrinkage network (WPT-DRSN) and tunable Q-factor
wavelet transform with deep residual shrinkage network (TQWT-DRSN).
This model integrated time-frequency analysis and DL, demonstrating
promising outcomes in classifying non-stationary signals. In addition, REM
sleepbehaviordisorder (RBD)was investigated in conjunctionwithPD, and
the proposed model demonstrated high accuracy in early detection of PD
and disease tracking.

Dar et al.157 introduced an architecture called 1D-CRNN-ELM, which
combined a CRNN and an ELM to detect six fundamental emotions in
individuals with PD. The suggested architecture achieved high accuracy in
classifying emotions and showed its effectiveness in EEG-based signals
emotion recognition. Also, Nour et al.158 suggested an approach that

Table 16 (continued) | A comparison of biomarkers papers

Article Main idea Tools Applied algorithms Advantages Disadvantages

• SVM
• RF

• Fewer parameters
• Low complexity

164 ML-driven prediction and
detection of PD subtypes

• Python • Non-negative
matrix
factorization

• GMM
• RF
• LightGBM
• XGBoost

• High AUC (ROC) • Low scalability

165 ML-based PD prediction using
NHIS screening data

• Not mentioned • LR
• RF
• Neural networks
• GBM
• DT
• NB
• XGBoost

• High AUC (ROC)
• High accuracy
• Cost-effective

• Restriction of data to a particular nation

166 ML-based prediction of
cognitive outcomes in PD
patients

• R programming
• PRSice-2 software

• ElasticNet
• RF
• SVM
• Conditional
inference forest

• High sensitivity • Low scalability

167 AI-based PD detection using
ECG data

• Python
• Epic Software

• LightGBM
• CNN

• High specificity • Small sample size for validation

168 Dyskinesia prediction in PD
via ML

• Not mentioned • RF
• CART
• Adaboost
• DT
• LR
•MLP
• SVM

• High AUC (ROC) • Not analyzing parameters such as F1-
score and sensitivity

This table Includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages, and disadvantages.
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classified PDusing ensemble learning through EEG signals. Thementioned
models were investigated in terms of several evaluation metrics, such as
kappa score, ROC curve, and accuracy, demonstrating their performance.
Moreover, Chu et al.159 offered an advanced framework for EEGmicrostates
utilizing DNN to identify patients with PD in the initial stages. Also, brain
regions were investigated for any probable relationship with PD. The
assessments depicted that the model could increase accuracy.

Lin et al.160 developed a method for assessing and estimating the
severity of impulse control disorder (ICD) comorbidity in patients with PD
using ML. Furthermore, EEG measurements were obtained utilizing an
inexpensive headset, which enabled the device to be implemented in routine
environments. Moreover, Wu et al.161 investigated the potential biomarkers
and therapeutic target genes for PD and confirmed the findings using
experimental approaches. Also, this study used different ML algorithms,
includingLASSOandRF. In another research,Uehara et al.162 introduced an
approach for diagnosing PD using sebum RNA profiles. In addition, they
analyzed the profiles usingMLmethods. This approach showed high AUC
(ROC). Additionally, Aljalal et al.163 demonstrated the efficiency of various
entropy measures and discrete wavelet transform (DWT) combined with
MLmethods fordiagnosingPDusingEEGdata.Also, the suggestedmethod
showed high accuracy.

Using longitudinal data from two PDBP and PPMI cohorts, Dadu
et al.164 developed ML-based models to detect distinct subgroups of PD and
predict disease progression. Based on the study findings, AUC (ROC) was
high, indicating a framework for predicting PD progression up to five years
before diagnosis. Besides, Park et al.165 presented a cost-effective method for

predicting PD risk and enabling early detection throughML techniques and
longitudinal health screening data. Cholesterol levels, blood pressure, and
hemoglobin levels were identified as the most critical predictors. Moreover,
the proposed method achieved a high AUC (ROC) for the neural network
model. Further,Harvey et al.166 introduced anML-based approach to forecast
cognitive outcomes in PD patients. In addition, the proposed approach
obtained high sensitivity. Karabayir et al.167 also provided a 1D-CNN-based
method for predictingprodromal PDup tofive years before clinical diagnosis
by using 10-secondECGdata.According to thefindings, themethod showed
high specificity. Moreover, Leal et al.168 developed a model to predict PD
patientswho are at risk of developing dyskinesia using clinical and behavioral
data. The presentedmodel using the RF classifier showed high AUC (ROC).

Qualitative analysis of biomarker-based approaches. We analyzed
biomarker-based approaches thoroughly and introduced their strengths,
weaknesses, opportunities, and threats to the classification in the context
of PD diagnosis using ML:
• Strengths: The qualitative review led to two outcomes. First, having a

strong biological view of PDmay lead to early detection of the disease.
Second, these approaches may be utilized for personal treatment and
monitoring of disease progression.

• Weaknesses: While biomarker data collection is invasive, it may result
in patient willingness to do tests. Many variables among different
populations, such as genes, may hinder the generalization of models.
These methods are expensive; indeed, they need many experts and
resources to be accomplished.

Table 17 | Biomarker’s evaluation metrics

Article Accuracy Sensitivity Specificity F1-scores Precision AUC (ROC) FPR MCC Standard deviation Kappa coefficient

1 + + + + +

6 + + +

145 + + + + + +

146 + + + + + +

147 + + + + +

148 + + + + +

149 + +

144 + + + + +

150 +

151 + +

152 + + + +

153 + + + + +

154 + + + +

155 + + + + + +

156 + + + + + + +

157 + + + + +

158 + + + + + +

159 + +

160 + + +

161 + +

162 + + + + + +

163 + + + + +

164 +

165 + +

166 + + + + +

167 + + + +

168 + + + + +

Plus (+) means the metric that has been evaluated in the paper, and blank cells mean the metric has not been evaluated in the paper.
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• Opportunities: Resolving these concerns may involve combining bio-
marker datawith imaging and other clinical data, potentially leading to
higher accuracy. Employing advanced technologies andmethods such
as genomics and proteomics may accelerate identifications. Moreover,
scientists may use non-invasive approaches such as saliva and urine
biomarkers to increase the willingness among patients.

• Threats: However, the quality of the collected data varies due to dif-
ferences in data collection and storage methods. Also, there are ethical
barriers to regulating and deploying biomarker data.

Multimodal
Multimodal datasets provide a complete PD diagnosis. These datasets
contain biomarkers, medical imaging, movement patterns, and acoustic
sounds. Improving the accuracy of early PD diagnosis through refined ML

models requires the integration of various data input sources169, as a holistic
perspective is essential. Table 18 presents the details of the dataset, including
data collection periods, the number of participants, database names, mul-
timodal data types, and supplementary information. Table 19 covers the
multimodal dataset-based articles, including their main ideas, advantages
and limitations, applied tools, and algorithms. Furthermore, the evaluation
metrics are outlined in Table 20. In Section “Multimodal-based approa-
ches”, multimodal-based approaches are reviewed. Section “Qualitative
analysis of multimodal-based approaches” also includes a qualitative ana-
lysis of approaches, such as strengths, weaknesses, opportunities, and
threats.

Multimodal-based approaches. Salmanpour et al.170 identified optimal
feature combinations to evaluate andpredict subtypes of PDusing feature

Table 18 | Multimodal datasets

Article Repository/Source #PD #HC #PDF #PDM #HCF #HCM Information

170 PPMI220 885 – – – – – Longitudinal data (years 0–4), 981 features: motor, non-motor,
and imaging

171 PPMI220 423 196 146 277 70 126 7-year data collection from PPMI

PDEP288 610 196 218 392 70 126 PDBP dataset used for validation

169 PPMI220 648 434 256 392 232 202 HC: average age 62.38
PD: average of 64.38

172 PhysioNet250,251 93 72 32 40 35 58 HC: average age (63.65 ± 8.58)
PD: average age (66.30 ± 9.45)

15 PPMI220 73 59 21 52 16 43 Only individuals with complete MRI, SPECT, and CSF data were
included

173 290 93 73 – – – – an average age of 66.3 years

Sarkar dataset192 20 20 6 14 10 10 Audio features: Jitter, Shimmer, HNR, Auto-Correlation

HandPD291 74 18 15 59 12 6 From São Paulo State University, Brazil

174 PPMI220 396 168 136 260 59 109 58 individuals with SWEDD (35M, 23 F) with an average age of
(60.6 ± 10) years,
Participants lacking clinical and imaging features
HC: average age (61.1 ± 11.3)
PD: average age (61.7 ± 9.65)

175 Sarkar dataset192 20 20 6 14 10 10 26 features, including parameters related to time and frequency

292 28 28 – – – – From Dandenong Neurology, Melbourne, VIC, Australia

HandPD291 74 18 15 59 12 6 From São Paulo State University, Brazil

NewHandPD235 31 35 – – – – A total of 66 individuals

293 – – – – – – –

294 – – – – – 1108 images,
659 Covid patients,
277 bacterial pneumonia cases,
175 healthy lungs

176 PPMI220 264 – 155 109 – – 264 patients with known LRRK2

129 – 79 50 – – –

295,296 – – – – – – –

177 PPMI220 421 213 – – – – SWEED Group: 81 individuals,
465M and 250 F

178 PPMI220 460 160 178 282 53 107 Data was obtained on January 6,
2023, from the PPMI database,
A total of 675 entities,
SWEED Group: 55 individuals
(23 F, 32M)

179 Clinical 50 25 – – – – 14 neurocognitive tests, health questionnaires, and movement
evaluations

180 PPMI220 427 171 – – – – The model was trained with PPMI data and validated with
PDBP data

PDEP288 804 442 – – – –

In this table, we detailed all the datasets in papers and compared participant demographics (number, gender, and health status: #PD => Parkinson’s Disease, #HC => Number of Healthy Control
Participants, #PDF=>Number of Parkinson’s diseaseFemaleParticipants, #PDM=>Number of Parkinson’s diseaseMaleParticipants, #HCF=>Number of HealthyControl Female Participants, #HCM=>
Number of Healthy Control Male Participants).
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Table 19 | A comparison of multimodal datasets

Article Main idea Tools Applied algorithms Advantages Disadvantages

170 PD subtype classification and
forecasting using ML

• MATLAB • PCA
• KMeans algorithm
• Infinite latent feature
selection

• Relief algorithm
• FSKL-LLC
• UFS-MCC
• RDFSA
• SF-PC
• UFS-ASL
• UFS-OL
• LASSO
• DT
• SVM
• KNN
• LDA
• NPNN
• ECOCMC
•MLP_BPC
• RF
• Ensemble Leaner
Classifier

• Evaluation of diverse data
• Utilizing various ML
algorithms

• Low scalability

171 Statistical model for PD progression
analysis

• Not
mentioned

• IO-HMM
• A contrastive latent
variable model

• Analyzing longitudinal data • Not generalizing to all Parkinson’s
patients

• Not evaluating metrics such as
sensitivity and specificity

169 Early-stage PD diagnosis using ML • Not
mentioned

• SVM
• RF
• LR
• DT
• ET
• GNB
• LightGBM
• SGD
• AdaBoost
• KNN

• High accuracy • Lack of MRI and other informative
modalities

• LSTM and RNN may be more
accurate

172 Hybrid approach for PD identification
and staging with ML

• Not
mentioned

• DT
•Multi-variate
regression model

• High accuracy • Limited subject group
• Missing additional factors

15 DL frameworks for PD detection using
multimodal features

• SPM
• MATLAB

• Relief algorithm
• CNN
• SSAE

• High accuracy
• High sensitivity
• High specificity
• High F1-score
• High geometric-mean

• High complexity multi-modal
feature-based approach

• Not evaluating imbalanced
datasets

• Low scalability

173 Improved KNN algorithm for PD
diagnosis

• Python • KNN • High accuracy
• Lower margin of error
• Improved performance with
larger sample sizes

• Compatible with both odd
and even k-values

• Lack of reducing time complexity
• Not evaluating the sensitivity to
overlapping data

174 ML-based PD diagnosis using images
and clinical data

• Python • EBM • High accuracy
• High AUC (ROC)

• Low scalability
• Imbalanced datasets make bias
• Lack of correlation between data
• MRI and other features not
included

175 Quantum ReLU–based model for PD
detection

• Python
• MATLAB

• QReLU
• CNN
•M-QReLU

• High reliability
• High accuracy

• Lack of evaluation the noisy text
data

•Noassessment in small clinicswith
limited computation

176 Hybrid ML approach for PD diagnosis
usingpathogenic/non-pathogenic data

• Not
mentioned

• AdaBoost
• Bagging classifier
• BNB
• DT
• ET
• GNB
• GB
• KNN
• LDA
• LR
•MLP
• PAC
• RF
• Ridge Classifier

• High accuracy • Limited to initial clinical variables

https://doi.org/10.1038/s41531-025-01025-9 Review article

npj Parkinson’s Disease |          (2025) 11:187 33

www.nature.com/npjparkd


selection techniques and longitudinal datasets. In addition, various fea-
ture selection algorithms (FSAs), clustering, feature extraction algo-
rithms (FEAs), and classification algorithms were utilized. Also, based on
the findings, merging non-imaging data with SPECT-based radiomic
features and the optimal use of hybridML systems (HMLs) enhanced the
identification and prediction of PD subtypes in the fourth year. Similarly,
Severson et al.171 presented a statistical progression model using long-
itudinal data that accounted for intra-individual variations, medication
effects, and inter-individual differences to better understand the het-
erogeneous symptoms and progression of PD. They also used a con-
trastive latent variable model and a customized input-output hidden
Markov model as part of their method.

Junaid et al.169 proposed an interpretable ML framework that utilizes
multimodal data, including medication history, patient characteristics, and
motor and non-motor data, to detect and predict early signs of PD.
According to the results, the techniques were effective and accurate. Also,
Khera andKumar172 proposed a hybrid strategy to classify the severity of the
PDbased onML approaches. According to the evaluation results, themodel
could detect PD accurately. Pahuja and Prasad15 presented the modal-level
and feature-level frameworks based on DL architectures to improve the
diagnosis of PD. In addition, this studyusedmulti-modal features, including
biological (CSF) and neuroimaging. The results also demonstrated that the
provided frameworks had acceptable accuracy.

Richa Indu et al.173 introduced a modified KNN algorithm based on
handwriting, gait, and voice parameters for PD diagnosis. The authors
enhanced this algorithm by incorporating the δ-neighborhood for pre-
dicting the class of test samples and the concept of weights. The findings
showed that the proposed approach was accurate. In another study, Sarica
et al.174 suggested an ML technique using an explainable boosting machine
(EBM) to classify SWEDD, PD, and HC. Additionally, they used imaging
and clinical data in order to train their model. Despite the relatively small
dataset, the findings demonstrated that the model performed remarkably
well, achieving a high AUC-ROC score.

Parisi et al.175 proposed two activation functions, namely quantum
rectified linear unit (QReLU) and modified-QReLU (m-QReLU), aimed at

enhancing the performance of CNN in tasks such as medical image clas-
sification, PD diagnosis, and COVID-19 detection. The results indicated
that the proposed approach exhibited high accuracy and reliability. Also,
Hajianfar et al.176 offered a hybrid ML system to detect two essential genes,
namely leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase
(GBA), using the PPMI database to diagnose PD. Also, several feature
selection and feature extraction algorithmswere used to reduce the number
of variables and tackle overfitting. The evaluation results demonstrated high
accuracy in performance.

Kanagaraj et al.177 offered a method for enhancing the accuracy of PD
diagnosis by utilizing PPMI data and an ant colony optimization approach.
The proposed method resulted in more accurate predictions with fewer
features, enhancing computational efficiency. Additionally, it demonstrated
high accuracy. Also, Aggarwal et al.178 proposed a method using 1-D CNN
and data augmentation to classify non-PD, PD, and scans without evidence
of dopamine deficit (SWEDD) and avoid misdiagnosis. Their approach
achieved high-performance in precision, F1-score, recall, and accuracy. In
another study, Templeton et al.179 applied ML to classify PD and its stages
through tablet-based neurocognitive assessments. The model utilized
multimodal data, including speech,memory, evaluations ofmotor function,
and the CART algorithm. Furthermore, the proposedmodel achieved high
accuracy. Makarious et al.180 presented a model for diagnosing and mana-
ging PD before patients recognize the signs and symptoms. This method
was developed to identify PD by combining genetic, clinical, and demo-
graphic data with ML methods, such as AdaBoostClassifier and GenoML.
According to the results, this method had a high AUC (ROC).

Qualitative analysis of multimodal-based approaches. Through cri-
tical review and analysis of the papers using multimodal-based approa-
ches, we listed some of the most important strengths, weaknesses,
opportunities, and threats of the classification:
• Strengths: The primary advantage is the accumulation of both motor

and non-motor symptoms, which drives the resolution. Also, in this
category, all the forms of datasets, such as acoustic, imaging,
movement, and biomarker, are combined to increase accuracy.

Table 19 (continued) | A comparison of multimodal datasets

Article Main idea Tools Applied algorithms Advantages Disadvantages

• SVM
• Ensemble Voting
• QDA

177 PD prediction improvement using ant
colony optimization

• MATLAB • Ant colony
optimizations

• Regression neural
network

• High accuracy
• High F1-score
• High sensitivity
• High specificity

• Not evaluating metrics such as
recall and TNR

178 1D-CNN-based detection of PD
and SWEDD

• Not
mentioned

• CNN • High accuracy
• High recall
• High F1-score
• High precision

• Low scalability

179 ML-based classification of PD and its
stages using digital health data

• Python • DT
• CART

• High accuracy
• High recall
• High precision

• Low scalability

180 ML-based PD detection using
multivariate data

• Python
• GenoML

•MLP
• LR
• GB
• AdaBoost
• SGD
• SVM
• KNN
• LDA
• QDA
• Bagging classifier
• XGBoost
• ERT
• SHAP

• High AUC (ROC) • Not involving other kinds of data,
such as MRI or voice data

This table includes key concepts (main ideas), the utilized tools, the applied algorithms, advantages and disadvantages.

https://doi.org/10.1038/s41531-025-01025-9 Review article

npj Parkinson’s Disease |          (2025) 11:187 34

www.nature.com/npjparkd


• Weaknesses: However, these approaches require significant financial
resources, as gathering clinical data involves various tests, and
acquiring movement datasets may necessitate high-tech devices. Also,
these need to be done with substantial computational resources and
expertise, which makes the entire process too expensive.

• Opportunities: Paying attention to the mentioned scenarios may pave
the way for future researchers. Developing new fusion techniques for
multimodal datasets may optimize the process. Also, multimodal
analysis may reveal a new pattern of biomarkers that were not obvious
through single-modal analysis.

• Threats: The risk of data overfitting is inevitable and should be con-
sidered due to model complexity and limited data.

Analysis of results
The results of our systematic review procedure are discussed in this section.
Section “Overview of the selected studies” presents an overview of the
selected studies, while Section “Objectives” discusses the advantages, lim-
itations, and differences among the various PDdatasets andML techniques.
Analyzing classifications used in the dataset and helping to draw a future
path for researchers are the ultimate goals of this study.

Overview of the selected studies
The goal of this study is to investigate state-of-the-art PD datasets currently
used in diagnosis with the aid of ML methods. To achieve this, we have
considered the following complementary questions (CQs):
• CQ1: Which groups are actively involved in diagnosing PD with ML

applications?
• CQ2: Which publishing channels distributed the most papers?
• CQ3: How are the publications and studies distributed on diagnosing

PD with ML approaches per publisher?
• CQ4: How are the publications and studies distributed on diagnosing

PD with ML approaches per year?
• CQ5: How do the studies address the Parkinsonian syndrome classi-

fication years before diagnosing PD and performing complex
classification tasks?

These questions aim to provide a clearer understanding of the current
landscape of PDdiagnosis usingMLand identify future trends andpotential
research directions.
• CQ1: Which groups are actively involved in diagnosing PD with ML

applications?

After synthesizing and selecting the papers, we extracted the authors’
affiliations. Table 21 presents a comprehensive list of universities and
institutes that have contributed at least twice in this field. Researchers from
the University of British Columbia, Canada; Skolkovo Institute of Science
and Technology in Russia; the University of Surabaya in Indonesia; RMIT
University in Australia; FAU in Germany; and Stanford University in
United States published a significant number of research papers on PD
diagnosis through ML approaches.
• CQ2: Which publishing channels distributed the most papers?

Table 22 shows that most JCR-indexed journal papers on PD
diagnosis using ML approaches are published in BSPC, SR, NCA,
MTAP, IEEE TONSRE, IEEE JOBHI, CIBM, and NPD. Table 22
provides a list of JCR-indexed journals that have published at least
two related papers, including the publisher’s name and abbreviation,
as well as the journal’s impact factor.

• CQ3: How are the publications and studies distributed on diagnosing
PD with ML approaches per publisher?
Figure 5 presents the distribution of publishers across the given subject
annually. Figure 5A shows that Elsevier is the leading publisher,
accounting foroverone-thirdof the reviewedpapers. In secondplace is
Springer with 31%, followed by IEEE with 17% andNature with 11%.
Wiley has contributed 4%, and both Taylor & Francis and ACM each
have a share of 1% of the total publications. Figure 5B–E showed the
trends and number of studies about diagnosing PD with ML over the
mentioned timeline based on publishers.
The charts show thatWiley published four papers in 2021, while only
two were published in 2023. Moreover, Elsevier’s contribution was
greater over these years, except in 2024, when only two papers were
published by April. Springermaintained a steady pace, contributing at
least ten papers annually, except in 2024, with only 5 papers published
untilApril 2024.Meanwhile, IEEEshowedacontribution in2023,with
a total of 12 publications. In 2021, Nature published only one paper,
while during the rest of the timeframe, it showed a steady contribution
of at least four papers annually.On the other hand,ACMandTaylor&
Francis have the smallest share of releases, with just one publication
each, making them the two publishers with the fewest papers.

• CQ4: How are the publications and studies distributed on diagnosing
PD with ML applications per year?

Figure 5 illustrates a steady increase in publications, rising from 37 in
2021 to42 in 2022,with anoverall upward trendobservedbetween2021and

Table 20 | Multimodal evaluation metrics

Article Accuracy Sensitivity Specificity F1-
score

Precision AUC
(ROC)

FPR MAE Correlation
coefficient

RMSE Standard
deviation

G-mean Model
likelihood

NPV

170 + +

171 +

169 + + + +

172 + + + +

15 + + + + +

173 + + + + +

174 + + + + +

175 + + + + + +

176 + +

177 + + + + + + +

178 + + + + +

179 + + +

180 + + + + + +

Plus (+) means the metric that has been evaluated in the paper, and blank cells mean the metric has not been evaluated in the paper.
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2024. In the year 2023, the total number of papers reached its highest point
of 43. Even though just 11 papers were published up to April 2024, the
research in this field is improving.
• CQ5: How do the studies address the Parkinsonian syndrome classi-

fication years before diagnosing PD and performing complex
classification tasks?

According to Fig. 6, of the 133 studies reviewed, only 20% focused on
the early diagnosis of PD, and none specifically addressed the classification
of Parkinson’s syndromes. This highlights a significant gap in research
within this field. While many studies focused on binary classification tasks,
such as distinguishing between PD and HC, these approaches may not
adequately capture the complexity and challenges involved in clinical
diagnosis. In complex cases such as those mentioned, there is a need for
longitudinal datasets and subtle signal changes. Future research should
focus on the Parkinsonian syndrome classification years before diagnosing
PD to increase the real-world effectiveness of ML in PD diagnosis.

However, several studies2,4,15,54,59,65,71,72,77,87,92,124,130,134,143,148,154–156,164,165,167,
169,170,174,179,180 also focus on more complex tasks, such as diagnosing the

early stages of PD using non-motor symptoms. These symptoms
include olfactory impairment, depression, rapid eye movement, sleep
behavior disorder (RBD), and data obtained from fMRI, saliva, or blood
tests. Additionally, research has aimed to identify PD from similar
conditions, such as SWEDD. These approaches highlight the potential
of ML to tackle various diagnostic challenges beyond simple binary
classification.

Table 23 shows that the acoustic data and biomarkers category con-
tains the most papers on the early diagnosis of PD, while the medical
imaging category has the fewest articles.

Objectives
In this section, we answer some research questions by providing sta-
tistical and analytical investigation results according to Section
“Planning”.

• RQ1: What types of datasets are used to diagnose PD?
In our detailed review in Section “Classification of the selected studies”,

we have distinguished the datasets used in the papers into five discernible
categories–namely movement information, medical imaging, acoustic

Table 21 | Active groups and their research focus

University/Institute Studies Research focus

University of British Columbia, Canada 90,147,170,176 Medical images, Multimodal, Biomarkers

Skolkovo Institute of Science and Technology, Russia 113,119,139 Movement data

University of Surabaya, Indonesia 53,67,79 Acoustic data

RMIT University, Australia 53,67,79 Acoustic data

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany 66,115,133 Movement data, Acoustic data

Stanford University, United States 147,151,167 Biomarkers

A. I. Burnazyan Federal Medical and Biophysical Center, Russia 113,139 Movement data

Medical Valley Digital Health Application Center, Germany 115,133 Movement data

Luxembourg Institute of Health, Luxembourg 115,133 Movement data

Tsinghua University, China 55,61 Acoustic data

Shandong First Medical University and Shandong Academy of Medical Sciences, China 140,148 Biomarkers, Movement data

Xi’an Jiaotong University, China 117,135 Movement data

Imam Khomeini Marine Science University, Iran 55,70 Acoustic data

Wenzhou University, China 55,70 Acoustic data

Hong Kong Baptist University, China 100,149 Biomarkers, Medical image

Sungkyunkwan University, South Korea 91,169 Multimodal, Medical image

Benha University, Egypt 153,169 Biomarker, Multimodal

Technical University of Kosice, Slovakia 79,121 Acoustic data, Movement data

University College London, UK 85,89 Medical image

Chongqing University, China 62,68 Acoustic data

University of Electronic Science and Technology of China (UESTC), China 58,85 Biomarker, Acoustic data

Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan 85,150 Biomarker, Medical image

University of Sfax, National Engineering School of Sfax (ENIS), Tunisia 56,71 Acoustic data

Agri Ibrahim Cecen University, Turkey 57,106 Medical image, Acoustic data

Jamia Millia Islamia, India 65,101 Medical image, Acoustic data

University of Genoa, Genoa, Italy 98,136 Medical image, Movement data

Michael J. Fox Foundation, USA 136,171 Multimodal, Movement data

University of Alberta, Edmonton, Alberta, Canada 94,136 Medical image, Movement data

University of Illinois at Urbana-Champaign, USA 164,180 Biomarker, Multimodal

National Institutes of Health, USA 164,180 Biomarker, Multimodal

UCL Queen Square Institute of Neurology, UK 164,180 Biomarker, Multimodal

University College London, UK 164,180 Biomarker, Multimodal

Virginia Commonwealth University, USA 164,180 Biomarker, Multimodal

Georgia Institute of Technology, USA 52,180 Multimodal, Acoustic data
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information, biomarkers, and multimodal– which has been provided in
Fig. 4.

• RQ2: Which category of datasets is used the most to diagnose PD?
Based on our detailed review in the fourth section and the answer to

RQ1. This paper categorizes datasets into five groups. According to Fig. 7,
about 25% of the studies utilized movement data, while acoustic data was
slightly less common, appearing in 23% of the cases. Medical imaging and
biomarkers jointly ranked in the third place with two tenths, respectively.
Also, multimodal with 11% is a novel approach that drives scientists’
attention.

• RQ3: What tools are used the most in assessing ML approaches in
diagnosing PD?

Figure 8 shows a collection of the tools demonstrated in Tables 6, 9, 12,
15 and 18. It shows the wide range of software and tools that experts have
used in their work. Python ranks the most considerable proportion,
accounting for 42% of usage, closely followed by MATLAB at 23%. R was
used in8%of the studies,while FSL,with 3%,was allocated the shortest rank.
This data provides insight into the preferred computational tools in ML for
assessing PD.

•RQ4:Whatmetrics are significantly used to assess theML techniques
in diagnosing PD?

Applying ML for PD diagnosis has been assessed using various tech-
niques and measures. The measures include accuracy, TPR (sensitivity),
precision, TNR, F1-score, AUC (ROC), and MCC. Tables 7, 10, 13,
16 and 19 offer thorough assessments applied in review papers. In addition,
Tables 6, 9, 12, 15 and 18 detail the benefits and downsides of each cate-
gorization approach. For a more detailed view, our statistical analyses are
visually represented in Figs. 9 and 10, which show the comprehensive
percentage distribution of the evaluation metrics and the parameter esti-
mations by category, respectively. Figure 9 indicates that accuracy is the
most frequently reportedmetric, representing 20% of the cases, followed by

sensitivity at 18%. Precision, F1-score, and specificity are also significant,
with 12% each. At the same time, balanced accuracy stood at the lowest end
with only 1%.

According to Fig. 10, Studies involving acoustic datamostly focused on
accuracy (21.13%),with a similarly strong emphasis on Sensitivity (20.42%).
A minor 9.86% of studies considered AUC (ROC), and none of the papers
evaluated balanced accuracy. As the focus shifted to movement data, about
one-fifth of papers aimed to enhance accuracy. In medical imaging, the
focus on accuracy peaked at 18.05%, and sensitivity reached 17.29%, while
AUC and balanced accuracy were considered in 9.02% and 0.75% of the
studies, respectively. Biomarker research displayed accuracy with 21.74%
derived the most attention; also, AUC received significant attention at
18.26% compared to another group. When it comes to multimodal, accu-
racy accounted for 21.05%of studies.However, balanced accuracy rated just
3.51%, and it was the highest among other categories. This suggests a
relatively balanced focus across evaluation metrics. Across all fields, accu-
racy consistently emerged as a critical metric in PD detection using ML
approaches, although other metrics, such as balanced accuracy, F1-score,
and AUC, might better represent model performance.

The focus on some evaluation criteria for MLmodels in PD diagnosis
may lead to an inadequate evaluation of the model’s actual performance.
Figure 9 indicates that accuracy is the most frequently used criterion,
warranting further investigation. Focusing insufficiently on class balance in
the imbalanced dataset can reduce the effectiveness of accuracy as a per-
formance evaluation metric. In medical data, the number of positive cases
(patients) is typicallymuch lower than that of negative cases (non-patients).
Using accuracy as a metric does not effectively reflect a model’s ability to
identify minority classes correctly. Balanced accuracy is a more suitable
measure for evaluating an imbalanceddataset,which appeared inonly 1%of
the reviewed articles. Similarly, F1-score and AUC (ROC) are widely used
but remain less common than accuracy.Many reviewed papers in our study

Table 22 | Distribution of papers by publication channel

Publisher Publication channel Abbreviation Count Impact factor

IEEE IEEE Transactions on Neural Systems and Rehabilitation Engineering IEEE TONSRE 6 4.8

IEEE Journal of Biomedical and Health Informatics IEEE JOBHI 5 6.7

IEEE Access IA 4 3.4

IEEE Transactions on Instrumentation and Measurement IEEE TOIM 2 5.6

Elsevier Biomedical Signal Processing and Control BSPC 12 4.9

Computers in Biology and Medicine CIBM 5 7

Parkinsonism & Related Disorders PRD 4 3.1

Expert Systems with Applications ESWA 4 7.5

NeuroImage: Clinical NIC 3 3.4

Computational Biology and Chemistry CBC 2 2.6

Applied Acoustics AA 2 3.4

Journal of Neuroscience Methods JONM 2 2.7

Computer Methods and Programs in Biomedicine CMPIB 2 4.9

Springer Neural Computing and Applications NCA 7 4.5

Multimedia Tools and Applications MTAP 6 3

Soft Computing SC 3 3.1

Physical and Engineering Sciences in Medicine PESIM 2 2.4

European Radiology ER 2 4.7

Annals of Nuclear Medicine AONM 2 2.5

Brain Imaging and Behavior BIAB 2 2.4

Neurological Sciences NS 2 2.7

Wiley Movement Disorders MD 2 7.4

Nature Scientific reports SR 10 3.8

npj Parkinson’s disease NPD 5 6.7
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used techniques such as oversampling, class weighting, and robust algo-
rithms to handle imbalanced data. Although accuracy and F1-score are
often preferred due to their ease of use, it is imperative to employ more
robustmeasures such asbalancedaccuracy andAUC(ROC) toassessmodel
performance fully.

• RQ5: What ML algorithms have been considered the most in
diagnosing PD?

Figure 11 shows the several ML approaches that significantly impact
the diagnosis of PD. In this paper, we provide information based on the
following categories: DL algorithm, regression algorithm, ensemble algo-
rithm, reduction algorithm, clustering algorithm, ANN, optimization
algorithm, feature selection algorithm, signal processing algorithm, and
others. Figure 11 demonstrates that the most frequently used algorithms
among all published papers were DL algorithms, which had a 20% share,
followed by ensemble algorithms with 16%. SVMs, with 12%, ranked third
in usage. Algorithms such as ANN, optimization, reduction, and regression

algorithms eachhadusage rates ranging from7%to9%. In contrast, the least
utilized approaches were signal processing techniques, clustering algo-
rithms, and feature selection methods, with usage rates of 1%, 1%, and 2%,
respectively.

In addition, the algorithmic advantages across different study topics for
PD diagnosis are clearly shown in Fig. 12A–E. Figure 12A shows that DL
was the most frequently used algorithm, appearing 16 times across the
studies. Ensemble methods, SVM, ANN, and optimization algorithms fol-
lowed, with usage rates of 12%, 11%, 10%, and 9%, respectively. Regarding
medical imaging, DL algorithms recorded the first usage with 21 instances,
according to Fig. 12B, while the reduction algorithm had the lowest usage.
Figure 12C shows that both the DL algorithm and the ensemble algorithm
were each used 17 times, whereas feature selection received the lowest
contribution ranking. In the biomarker category (Fig. 12D), ensemble
algorithms had the highest usage with 17 instances, followed byDLwith 13,
SVM with 11, and reduction algorithms with 10. In the final section of the

Fig. 5 | Annual distribution of the studied papers by publisher. PanelsA–E present the relative share of different publishers for each year.AYear 2021-2024, BYear 2021,
C Year 2022, D Year 2023, E Year 2024. The pie charts illustrate the percentage of papers published by each publisher in the corresponding year.
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figure, the ensemble ranked first, followed closely by regression algorithms
in second place.
• RQ6: What validation methods are used in studies diagnosing PD

with ML?
Figure 13 highlights that the reviewed studies commonly employ

evaluationmethods such as cross-validation and train-test split. About 49%
of the studies used cross-validation to evaluate model performance. A total
of 29% of the studies used Train-Test Split as an evaluation method, and
only 19%used independent test sets to test the generalizability of themodels.
This is considered a significant limitation in evaluating the generalizability
of the models. Furthermore, 3% of the studies did not directly mention the
assessmentmethod, raising concerns about the reliability of the results. As a
result of the lack of transparency in this field, the model’s performance in
real-life conditions may be overestimated. In general, data leakage is a

common pitfall inML studies. This occurs when themodel unintentionally
learns from information in the test dataset. To ensure the reliability of the
results, appropriate methods for data segmentation and careful evaluation
strategies should be employed.

Open issues, challenges, and future trends
• RQ7: What are the major challenges, future trends, and open issues in
diagnosing PD with ML?

We propose future research areas categorized into three groups: open
issues, future trends, and challenges, see Fig. 14. This is motivated by the
growingneed to identify clinical andpractical approaches fordiagnosingPD
using ML, as well as the review and analysis of data from selected papers.
Each group is detailed below. The primary challenge in diagnosing PD via
ML approaches is the absence of a predefinedmethod,making it essential to
employ ML approaches to evaluate clinical and non-clinical data from
potential patients, healthy individuals, and those alreadydiagnosedwithPD.
Therefore, managing data imbalance, regulating and normalizing, and
overcoming ethical and legal obstacles remain the primary issues in this
subject. Additionally, several problems in PD diagnosis remain unresolved,
including the lack of advanced methods, the limited use of wearable tech-
nology, non-generalizable datasets, and insufficient language diversity in
voice datasets. Furthermore, prospects for future research include the use of

Fig. 6 | Distributing articles on early detection of PD.

Table 23 | Distribution of studies on the early detection of PD
across categories

Ref Category

54,59,65,71,72,77 Acoustic data

87,92 Medical images

4,124,130,134,143 Movement data

148,154–156,164,165,167 Biomarker’s data

15,169,170,174,179,180 Multimodal data

Fig. 7 | Percentage of papers included in this study for each classification.

Fig. 8 | The proportion of tools utilized in the analyzed papers.

Fig. 9 | Percentage of evaluated parameters in studied papers.
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genetic data, 3D dopamine imaging, and multimodal analysis. This intro-
duction is followed by a detailed discussion of the challenges, potential
developments, and unresolved concerns.

Open issues

• GeneralizableDatasets:Many researchhavepointed out that there is an
abundance of appropriate datasets for their evaluations8,57,72,77,84,86,91,
97,102,113,115,117,122,124,127–129,131,134,135,139,147,148,150,151,153,154,174,175. InML, one of the
most fundamental principles is that the more data available for train-
ing, the more accurate model’s results will be. In addition, the authors
did not assess their MLmethods on any other datasets. The absence of
evidence demonstrating the performance of the models on other data
typesmay have resulted inmisleading findings, even if themodelsmay
have performed successfully on some of them. Consequently, larger
andmore diverse cohorts should be included in research to ensure that
the results are both reliable and generalizable to a broader population.
The low sample sizes and lack of generalizability might represent an
ongoing, unresolved issue.

• Model Generalization: The capacity of models to generalize across
diverse demographic and clinical contexts is a common source of

worry. Indeed, the lack of thorough investigation using varied datasets
limits our understanding of how well these models perform under
diverse conditions. To address this, researchers are looking at ways to
strengthenmodels by cross-validation and verifying them on different
external cohorts106,115,117,130,147,148,150,151. Consequently, this ongoing issue
may play a significant role in future research.

• Lack of advanced analysis: The need formore advanced analytical tools
to manage complicated data aspects, particularly non-linear correla-
tions and interactions among variables, is often brought up in
discussions. This open issue will be discussed often by advocating the
use of advanced ML and DL frameworks. This will allow for a better
grasp of the intricacy involved113,115,117,119,123,124,127–131,133–135,140,172.

• Limited language diversity:Most of the presented models, which ana-
lyze vocal datasets73,74,77,138, have only beenassessedby a single language,
which again may produce inaccurate findings since other languages
were unable to operate well with their models. Indeed, the amount of
sound that may be made in different languages is varied; as a con-
sequence, their method and results are only valid for a restricted
number of individuals. In addition, the ethnicity and race of the par-
ticipants have not been explored as a parameter in almost all of the
datasets. These two factorshave adirect bearingon the conclusions that
may be drawn about a PD diagnosis since members of the same
populationmight exhibit symptomsof this disease in the samemanner.
This open issue should be resolved to obtain more reliable results.

• Personalized treatment: The development of predictive models using
ML has the potential to significantly enhance the early identification
and treatment of PD, eventually leading to improved patient outcomes.
Among the significant challenges that still need to be solved is the
development of individualized prediction models that account for
specific characteristics of an individual, such as their age, gender,
medical history, genetics, and lifestyle variables. The possible outcome
of this is that it might lead to more accurate predictions and improved
treatment programs that are specifically customized to meet the
requirements of those who are at risk for developing PD. Specifically,
studies74,128,151 raised questions in this regard.

• Wearable technologies: ML can evaluate patient body vibrations and
wearable sensor data to diagnose better and monitor illness develop-
ment. Another unresolved challenge is using wearable devices that

Fig. 11 | Percentage of algorithms used in reviewed studies.

Fig. 10 | The percentage of evaluation parameters in each category.
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continually monitor motor and non-motor symptoms in PD patients
and giving real-time data to dynamically change therapy. Wearable
sensors, such as smart watches, smart bands, and other available
wearable sensors9,181–183, can be utilized as a straightforward and
accessible diagnostic tool for PD. Nevertheless, substantial work
remains in this area.Wearable devices for continuousmonitoring pose

challenges such as ensuring data accuracy, enhancing patient comfort
to improve compliance, securing sensitive health data, extending
battery life, and effectively integrating collected data into clinical
practice. Addressing these challenges is essential for using wearables to
monitor PD and other neurological disorders, enhancing treatment
options and patient outcomes. A gadget should be comfortable,

Fig. 12 | Thepercentage of algorithms used in each category.PanelsA–Edepict the
proportion of algorithms employed within the five categories of the proposed tax-
onomy:AAcoustic,BMedical,CMovement,DBiomarker, andEMultimodal. Each

pie chart reflects the proportion of algorithms utilized within the corresponding
category, based on the reviewed studies.
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washable, and able to detect sickness phases and drug effects. For
example, a wearable wristband collects data continuously over time
and identifies the various symptoms of PD74,122,131,135.

• Multimodal analysis:MultimodalML algorithms are one way to use
data from multiple datasets to diagnose PD more accurately. The

method incorporates data from multiple datasets, such as wear-
able sensors, medical imaging, and clinical data, and optimized
algorithms for each source. Although there are several studies on
various biological signals to evaluate mobility impairments in PD
patients, most studies only analyze a single method. Literature
indicates that the multimodal method is more precise than uti-
lizing each method independently. For example, in184 and185, the
authors assessed existing PD staging systems and determined that
incorporating additional modalities and functionalities beyond a
single modality, such as motor symptoms, is essential. This
approachwould enable amore objective scoring system, leading to
a more comprehensive evaluation of patients’ symptoms and
facilitating personalized treatment for each individual186. In gen-
eral, existing signal processing and classification techniques
incorporating data from many sensors have not been adequately
evaluated. Although significant progress has been documented in
multiple studies, there is currently no multimodal fusion system
that can accurately forecast illness severity and track disease
progression8,62,92,102,119,131,140,174. This open issue may play a vital role
in future research.

Fig. 14 | An overview of open issues, challenges, and future trends in diagnosing PD with ML.

Fig. 13 | Validation methods used in the reviewed studies.
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Challenges

• Data availability: The limited availability of comprehensive datasets of
good quality hinders research endeavors. Obtaining longitudinal data,
diverse patient groups, and multimodal datasets that include clinical,
genetic, and imaging data is a significant difficulty for many research
studies. The majority of currently available data are either difficult to
proprietary or access, belonging to hospitals or enterprises, and not
openly accessible. This challenge affects the robustness, general-
izability, and depth of researchfindings.Without diverse and extensive
datasets, researchers cannot validate their models across different
conditions, leading to less reliable and applicable results.

• Regularization and normalization: The regularization and normal-
ization processes are crucial DL tools for PD identification. These
strategies ensure the model learns valuable medical data patterns,
improves generalizability, and prevents overfitting. This improves
diagnostic accuracy and reliability. Even if these methods are not
adoptedwidely by theDL research community, they have the potential
to become a fruitful field of study in the following years.

• Handling data imbalance: An issue that often arises is the presence of
imbalanced datasets, in which certain classes or outcomes are under-
represented. As a consequence of this imbalance, models may be
slanted toward the class that comprises themajority. This, in turn,may
have an effect on the accuracy of projections produced for under-
represented groups within the population. The inability of a model to
accurately represent minority groups might result in diagnostic tools
that are less practical and clinical insights that are prejudiced130,154,175.

• Computational resource limitation: Advanced ML and DL methods
often require substantial computational resources, which may not be
available in all research settings, particularly in smaller clinics or
institutions in developing regions. This restricts the ability of some
researchers to employ the most advanced methodologies, potentially
leading to slower progress or less innovative outcomes.

• Ethical and regulatory hurdles: In the healthcare industry, obtaining
authentic patient data while safeguarding privacy is a significant
challenge. This difficulty is compounded by the lack of balanced
neurological disease datasets, which can adversely affect the efficiency
of ML models. Furthermore, there are many obstacles to overcome
when negotiating the ethical and regulatory environment, particularly
when working with sensitive health data and using AI-driven
technologies in clinical settings. The time required to obtain necessary
approvals and ensure compliance with ethical standards and
regulations can delay research progress and the implementation of
findings in clinical practice.

• Clinical adoption and usability: Designing tools and models that are
technically sound, user-friendly, and practically applicable in clinical
workflows is a common obstacle. Even with strong technical perfor-
mance, the lack of usability and integration into clinical practice can
limit the adoption and impact of research innovations.

• Real-testbed evaluation: Clinical testing and evaluationofMLmodels is
essential. The move from controlled research to real-world clinical
practice involves significant problems. To ensure these models are
productive and safe in real-world settings, patient variety, data
heterogeneity, and ethical implications must be considered. Data
scientists and healthcare practitioners must collaborate to create
clinically relevant and accurate models. Healthcare experts can
illuminate PD diagnosis, patient care, and the nuances of the disease.
Early identification and management of PD can improve the lives of
patients with this severe disorder.

• Robust validation methods: To address the identified methodological
challenges, future studies should emphasize robust validationmethods,
such as external validation using completely independent datasets and
k-fold cross-validation. Furthermore, clear documentation of the data
preprocessing process, and the dataset segmentation methods is
essential to reduce the risk of data leakage. The use of standard datasets

to compare model performance, along with advanced techniques such
as nested cross-validation, can enhance the validity of results. By
concentrating on these methods, researchers can contribute more
effectively, repeatedly, and transparently to this field.

Future trends

• Multimodal brain MRI: By revealing the structural and functional
changes in the brain associated with PD, multimodal brain MRI can
enhance the accuracy of PD diagnosis. In addition to aiding in early
diagnosis and identifying prodromal stages of PD, advanced MRI
techniques—when analyzed with ML— can improve diagnostic pre-
cision by integrating additional data layers from various MRI
modalities187. Moreover, integrating MRI data with additional bio-
markers, such as blood or cerebrospinal fluid indicators, through the
use of ML models has the potential to dramatically improve the early
identification and differential diagnosis of PD. The combination of
multimodal MRI and ML offers new avenues for improving PD
diagnosis.

• 3D Dopaminergic imaging: Future research in PD should focus on
developing 3DDopaminergic imaging tomap brain dopamine activity
more precisely. This method has the potential to increase the accuracy
of early diagnosis, develop individualized treatment methods, and
evaluate the effectiveness of treatment procedures in real-time. While
accurate visualization of dopaminergic neurotransmitter oscillations is
expected to enhance the diagnosis of PD progression, itmay also aid in
the development of more effective medicines. To gain a better
understanding of PD diagnosis and progression, three-dimensional
maps of dopaminergic neurotransmitter activity in the brain are
produced using advanced imaging methods87,104.

• Genetic and biomarker discovery: Future research on PD should focus
on genetic profiling and biomarker discovery to enhance diagnostic
precisionandpersonalized treatments.Researchers can identify unique
genetic markers and better understand their influence on disease
progression and treatment response by analyzing genetic data across
diverse populations and correlating it with clinical outcomes. Through
the use of this integrated method, new treatment targets may be dis-
covered, enabling earlier diagnosis andmore successful, individualized
therapy of PD. To facilitate an earlier andmore accurate diagnosis, it is
necessary to carry out genetic profiling to find biomarkers predictive of
the progression of PD54,86,96,102,107,144.

• Drug effect: The use of ML in research on the influence of medications
on neuromelanin in PD has the potential to dramatically improve the
accuracy and speed of these studies. ML algorithms can analyze
complex imaging data to find subtle changes in neuromelanin content
and distribution in the SN as a result of therapies. These algorithms
may be trained on datasets that are generated by modern 3D imaging
techniques,which enablesmore accurate segmentation and analysis. In
addition, ML models may be evaluated over a wide variety of external
cohorts to evaluate their robustness. This helps ML models to accu-
rately predict and generalize the effects of drugs onneuromelanin. This
approach has the potential to develop therapeutic solutions that are
more precisely targeted and a more comprehensive understanding of
the progression of PD87.

• Symptom variability: The diagnosis of PD and the subsequent sur-
veillance of its progressionmay prove challenging due to the extensive
range of individual symptoms. As a result of the fact that symptoms
might differ in terms of their presentation, frequency, and intensity,
developing an applicable diagnostic paradigm remains a challenging
endeavor. This issue may be resolved, and PD diagnosis and therapy
could be significantly enhanced by integrating a variety of data types
into ML models. These data types may include imaging data, audio
recordings, and clinical evaluations. The evaluation of all the patient
symptoms can lead to the development of more personalized and
effective medicines.
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• Advancing early detection and classification: Future studies should
prioritize the early detection of PD before severe symptoms appear, as
well as the differentiation of various Parkinson’s syndromes.
Researchers can improve generalization acrossdifferentpopulationsby
employing longitudinal data and multimodal datasets, along with
advanced ML approaches, such as transfer learning and ensemble
methods. Additionally, exploring tasks beyond simple binary classifi-
cation—such as tracking disease progression and classifying subsets—
holds significant potential for enhancing clinical applications.

• Adoption of evaluationmetrics: A robust evaluation criteria selection is
essential for the development of PD diagnosis models. Although
accuracy is widely used as a metric, its limitations in imbalanced
datasets highlight the need for alternative evaluationmeasures. Studies
should focus on metrics such as F1-score, balanced accuracy, AUC
(ROC), andMCC,whichprovide amore comprehensive assessment of
model performance and address the imbalanced class. Furthermore,
researchers should justify their selection of specific criteria to enhance
transparency and improve research reproducibility. This approach
leads to standardization of reporting criteria and facilitates compar-
ability of results among various studies.

Threats to validity and limitations
This study aims to offer a systematic and comprehensive review that
compares and classifies various ML methods for diagnosing PD. Although
the result of SLR is typically reliable from different aspects188, having lim-
itations in these papers is inevitable34. Consequently, the most substantial
limitation of this study has been highlighted below.
• Papers were selected from multiple well-known databases, including

Elsevier, IEEE, Taylor & Francis, Springer, ACM, Nature, and Wiley,
butwe cannot certify that all related paperswere selected. As a result, as
described in Stage 3.2 of the conducting phase, it is possible that some
articles were overlooked throughout the paper selection process.

• We classified the selected papers into five groups: acoustic data, bio-
markers, movement data, medical imaging, and multimodal dataset.
There could be alternative potential categorization, though.

• This SLR is organized around six fundamental questions, while there
may be other important inquiries to consider.

• Despite the extensive literature onusingMLapproaches for diagnosing
PD, this SLR focusedonpapers listed in the JCR,disregarding reputable
conference papers. Furthermore, articles published nationally, book
chapters, short papers, conference papers, editorial papers, and works
written in languages other than English were not considered.

• This SLR can be considered highly credible due to the defined review
protocol, adherence to a systematic process, and collaboration with
multiple researchers in this research.

Conclusion
A comprehensive SLR in diagnosing PD based on ML is conducted in this
study. This paper examines the use of well-knownML algorithms, as well as
the employed datasets, repositories, applied tools, evaluation factors, valida-
tion methods, and relevant algorithms, comparing their advantages and
disadvantages. In the first phase, 729 papers were collected based on a
research query from 2021 to April 2024. The top 133 papers were chosen for
the investigation based on methodology and inclusion/exclusion criteria.
Elsevier and Springer together constitute two-thirds of the proportion in this
field, with the former accounting for 35% and the latter for 31% of the
contribution.Nature contributed only 11%of the papers. A fraction of a sixth
of all publications will be devoted to the IEEE. On the other hand, Taylor &
Francis and the ACM each recorded the least share, reaching barely one
percent. Our study addressed a significant gap in research on early detection
ofPD,asonly20%of the reviewedarticles focusedon this aspect.Weoffereda
category inwhich the selected papers were organized intofive unique groups:
acoustic data (23%), biomarkers (20%), medical imaging (20%), movement
data (26%), andmultimodal (11%). Statistical analysis reveals that 20%of the
papers aimed to improve accuracy, while 18% focused on enhancing

sensitivity. Python and MATLAB were the preferred tools, with 42% of
publications using Python and 23% using MATLAB. The most commonly
used algorithms were DL-based algorithms, which utilized in 20% of the
selectedpapers.Basedon the reviewedpapers, nearlyhalf of the studies (about
49%) utilized cross-validation methods to assess model performance, while
29% depended on the train-test split technique. The study emphasized open
challenges and future trends in identifying PD using ML techniques. Open
issues in thisfield include generalizable datasets,model generalization, lack of
advanced analysis, limited language diversity in vocal datasets, personalized
treatment, wearable technologies, and multimodal analysis. Additionally,
significant challenges in this field, include data availability, regularization and
normalization, handling data imbalance, computational resource limitation,
ethical and regulatory hurdles, clinical adoption and usability, and real-
testbed evaluation. Future trends may focus on multimodal brain MRI, 3D
dopaminergic imaging, genetic and biomarker discovery, drug effect, and
symptom variability.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article.
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